scholarly journals The role of low-volatility organic compounds in initial particle growth in the atmosphere

Nature ◽  
2016 ◽  
Vol 533 (7604) ◽  
pp. 527-531 ◽  
Author(s):  
Jasmin Tröstl ◽  
Wayne K. Chuang ◽  
Hamish Gordon ◽  
Martin Heinritzi ◽  
Chao Yan ◽  
...  

Abstract About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday1. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres2,3. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles4, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth5,6, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer7,8,9,10. Although recent studies11,12,13 predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon2, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory)2,14, has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown15 that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10−4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10−4.5 to 10−0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.

2021 ◽  
Vol 21 (1) ◽  
pp. 183-200
Author(s):  
Liya Ma ◽  
Yujiao Zhu ◽  
Mei Zheng ◽  
Yele Sun ◽  
Lei Huang ◽  
...  

Abstract. The growth of newly formed particles with diameters from ∼ 10 nm to larger sizes was investigated in Beijing's urban atmosphere during 10–23 December 2011, 12–27 April 2012, and June–August 2014. In 11 out of 27 new particle formation (NPF) events during June–August, the maximum geometric median diameter (Dpgmax) of newly formed particles exceeded 75 nm, and the grown new particles may contribute to the population of cloud condensation nuclei. In contrast, no apparent growth in new particles with Dpgmax < 20 nm was observed in all of the events in December, in approximately half of the NPF events in April, and in only two events during June–August. New particles observed in the latter NPF events were too small to be activated as cloud condensation nuclei. Apparent new particle growth with Dpgmax ≤ 50 nm was observed in the remaining 18 NPF events. The 11 NPF events during June–August with Dpgmax exceeding 75 nm were analyzed in detail. The particle growth patterns can be clearly classified into three types: one-stage growth and two-stage growth-A and growth-B patterns. The one-stage growth pattern is characterized by a continuous increase in Dpg with Dpgmax ≥ 80 nm (4 out of 11 NPF events), and the two-stage growth-A and growth-B patterns are characterized by no apparent growth and shrinkage of particles, respectively, in the middle 2–4 h of the growth period (7 out of 11 NPF events). Combining the observations of gaseous pollutants and measured (or modeled) concentrations of particulate chemical species, the three growth patterns were discussed in terms of the spatial heterogeneity of NPF, formation of secondary aerosols, and evaporation of semivolatile particulates. Secondary organic species and NH4NO3 were argued to be two major contributors to the growth of new particles, but NH4NO3 likely contributed to growth only in the late afternoon and/or at nighttime.


2021 ◽  
Vol 21 (3) ◽  
pp. 2287-2304
Author(s):  
Runlong Cai ◽  
Chenxi Li ◽  
Xu-Cheng He ◽  
Chenjuan Deng ◽  
Yiqun Lu ◽  
...  

Abstract. The growth rate of atmospheric new particles is a key parameter that determines their survival probability of becoming cloud condensation nuclei and hence their impact on the climate. There have been several methods to estimate the new particle growth rate. However, due to the impact of coagulation and measurement uncertainties, it is still challenging to estimate the initial growth rate of new particles, especially in polluted environments with high background aerosol concentrations. In this study, we explore the influences of coagulation on the appearance time method to estimate the growth rate of sub-3 nm particles. The principle of the appearance time method and the impacts of coagulation on the retrieved growth rate are clarified via derivations. New formulae in both discrete and continuous spaces are proposed to correct for the impacts of coagulation. Aerosol dynamic models are used to test the new formulae. New particle formation in urban Beijing is used to illustrate the importance of considering the impacts of coagulation on the sub-3 nm particle growth rate and its calculation. We show that the conventional appearance time method needs to be corrected when the impacts of coagulation sink, coagulation source, and particle coagulation growth are non-negligible compared to the condensation growth. Under the simulation conditions with a constant concentration of non-volatile vapors, the corrected growth rate agrees with the theoretical growth rates. However, the uncorrected parameters, e.g., vapor evaporation and the variation in vapor concentration, may impact the growth rate obtained with the appearance time method. Under the simulation conditions with a varying vapor concentration, the average bias in the corrected 1.5–3 nm particle growth rate ranges from 6 %–44 %, and the maximum bias in the size-dependent growth rate is 150 %. During the test new particle formation event in urban Beijing, the corrected condensation growth rate of sub-3 nm particles was in accordance with the growth rate contributed by sulfuric acid condensation, whereas the conventional appearance time method overestimated the condensation growth rate of 1.5 nm particles by 80 %.


2020 ◽  
Vol 20 (12) ◽  
pp. 7359-7372 ◽  
Author(s):  
Dominik Stolzenburg ◽  
Mario Simon ◽  
Ananth Ranjithkumar ◽  
Andreas Kürten ◽  
Katrianne Lehtipalo ◽  
...  

Abstract. In the present-day atmosphere, sulfuric acid is the most important vapour for aerosol particle formation and initial growth. However, the growth rates of nanoparticles (<10 nm) from sulfuric acid remain poorly measured. Therefore, the effect of stabilizing bases, the contribution of ions and the impact of attractive forces on molecular collisions are under debate. Here, we present precise growth rate measurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performed under atmospheric conditions in the CERN (European Organization for Nuclear Research) CLOUD chamber. Our results show that the evaporation of sulfuric acid particles above 2 nm is negligible, and growth proceeds kinetically even at low ammonia concentrations. The experimental growth rates exceed the hard-sphere kinetic limit for the condensation of sulfuric acid. We demonstrate that this results from van der Waals forces between the vapour molecules and particles and disentangle it from charge–dipole interactions. The magnitude of the enhancement depends on the assumed particle hydration and collision kinetics but is increasingly important at smaller sizes, resulting in a steep rise in the observed growth rates with decreasing size. Including the experimental results in a global model, we find that the enhanced growth rate of sulfuric acid particles increases the predicted particle number concentrations in the upper free troposphere by more than 50 %.


2010 ◽  
Vol 64 (1) ◽  
Author(s):  
Elena Konyushenko ◽  
Miroslava Trchová ◽  
Jaroslav Stejskal ◽  
Irina Sapurina

AbstractConditions of polyaniline (PANI) nanotubes preparation were analyzed. Aniline was oxidized with ammonium peroxydisulfate in 0.4 M acetic acid. There are two subsequent oxidation steps and the products were collected after each of them. At pH > 3, neutral aniline molecules are oxidized to non-conducting aniline oligomers. These produce templates for the subsequent growth of PANI nanotubes, which takes place preferably at pH 2–3. At pH < 2, granular morphology of the conducting PANI is obtained. High final acidity of the medium should be avoided in the preparation of nanotubes, e.g., by reducing the amount of sulfuric acid which is a by-product. Reduction of the peroxydisulfate-to-aniline mole ratio was tested for this purpose in the present study. Lowering of the reaction temperature from 20°C to −4°C had a positive effect on the formation of nanotubes.


2012 ◽  
Vol 12 (1) ◽  
pp. 623-689 ◽  
Author(s):  
G. W. Mann ◽  
K. S. Carslaw ◽  
D. A. Ridley ◽  
D. V. Spracklen ◽  
K. J. Pringle ◽  
...  

Abstract. A global modal aerosol microphysics module (GLOMAP-mode) is evaluated and improved by comparing against a sectional version (GLOMAP-bin) and observations in the same 3-D global offline chemistry transport model. With both schemes, the model captures the main features of the global particle size distribution, with sub-micron aerosol approximately unimodal in continental regions and bi-modal in marine regions. Initial bin-mode comparisons showed that various size distribution parameter settings (mode widths and inter-modal separation sizes) resulted in clear biases compared to the sectional scheme. By adjusting these parameters in the modal scheme, much better agreement is achieved against the bin scheme and observations. Surface mass of sulphate, sea-salt, black carbon (BC) and organic carbon (OC) are, on the annual mean, within 25 % in the two schemes in nearly all regions. On the annual mean, surface level concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), surface area density and condensation sink also compare within 25 % in most regions. However, marine CCN concentrations between 30° N and 30° S are systematically higher in the modal scheme, by 25–60 %, which we attribute to differences in size-resolved particle growth or cloud-processing. Larger differences also exist in regions or seasons dominated by biomass burning and in free-troposphere and high-latitude regions. Indeed, in the free-troposphere, GLOMAP-mode BC is a factor 2–4 higher than GLOMAP-bin, likely due to differences in size-resolved scavenging. Nevertheless, in most parts of the atmosphere, we conclude that bin-mode differences are much less than model-observation differences, although some processes are missing in these runs which may pose a bigger challenge to modal schemes (e.g. boundary layer nucleation, ultra-fine sea-spray). The findings here underline the need for a spectrum of complexity in global models, with size-resolved aerosol properties predicted by modal schemes needing to be continually benchmarked and improved against freely evolving sectional schemes and observations.


2016 ◽  
Vol 16 (4) ◽  
pp. 1955-1970 ◽  
Author(s):  
M. Dal Maso ◽  
L. Liao ◽  
J. Wildt ◽  
A. Kiendler-Scharr ◽  
E. Kleist ◽  
...  

Abstract. Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Jülich plant–atmosphere simulation chamber with instrumentation for the detection of sulfuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulfuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOCs). We present direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulfuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.


2020 ◽  
Author(s):  
Agnieszka Kupc ◽  
Christina Williamson ◽  
Anna L. Hodshire ◽  
Jeffrey R. Pierce ◽  
Jan Kazil ◽  
...  

&lt;p&gt;Current estimates suggest that globally, about one third of low-level cloud condensation nuclei (CCN) originate from new particle formation (NPF) in the free troposphere. However, the exact mechanisms of how these new particles form and grow to CCN sizes are not yet well quantified. We investigate the formation of new particles and their initial growth in the remote marine atmosphere over the Pacific and Atlantic basins (~80 &amp;#176;N to ~86 &amp;#176;S using (1) gas-phase and size distribution measurements (0.003-4.8 &amp;#181;m) from the airborne-based NASA Atmospheric Tomography global survey (ATom; 2016-2018), (2) back trajectory data, and (3) two aerosol microphysics box models.&lt;/p&gt;&lt;p&gt;In the ATom observations, newly formed particles were ubiquitous at high altitudes throughout broad regions of the tropics and subtropics under low condensation sink conditions and were associated with upwelling in convective clouds. This pattern was observed over four seasons and both ocean basins.&lt;/p&gt;&lt;p&gt;In this study, we explore processes that govern NPF and growth in the tropical and subtropical free troposphere, discuss similarities and differences in NPF over both ocean basins, use box models to examine which nucleation schemes (e.g. binary, ternary, or charged) best explain the observations, and evaluate whether sulfuric acid precursors alone can explain the NPF and the initial particle growth. Comparing aerosol size distribution measurements with box model simulations shows that none of the NPF schemes commonly used in global models are consistent with observations, regardless of precursor concentrations. Newer schemes that incorporate organic compounds as nucleating or growth agents can plausibly replicate the observed size distributions. We conclude that organic precursor species may be particularly important in NPF in the tropical upper troposphere, even above marine regions.&lt;/p&gt;


2015 ◽  
Vol 15 (23) ◽  
pp. 13393-13411 ◽  
Author(s):  
S. J. Lawson ◽  
M. D. Keywood ◽  
I. E. Galbally ◽  
J. L. Gras ◽  
J. M. Cainey ◽  
...  

Abstract. Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non-methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a 4 h enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. A wind direction change lead to a dramatic reduction in BB tracers and a drop in the dominant particle mode to 50 nm. The dominant mode increased in size to 80 nm over 5 h in calm sunny conditions, accompanied by an increase in ozone. Due to an enhancement in BC but not CO during particle growth, the presence of BB emissions during this period could not be confirmed. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 ± 8 %), higher during the particle growth period (77 ± 4 %) and higher still (104 ± 3 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000 and 5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6–34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed (ΔO3 / ΔCO 0.001–0.074). A short-lived increase in NMOCs by a factor of 10 corresponded with a large CO enhancement, an increase of the NMOC / CO emission ratio (ER) by a factor of 2–4 and a halving of the BC / CO ratio. Rainfall on Robbins Island was observed by radar during this period which likely resulted in a lower fire combustion efficiency, and higher emission of compounds associated with smouldering. This highlights the importance of relatively minor meteorological events on BB emission ratios. Emission factors (EFs) were derived for a range of trace gases, some never before reported for Australian fires, (including hydrogen, phenol and toluene) using the carbon mass balance method. This provides a unique set of EFs for Australian coastal heathland fires. Methyl halide EFs were higher than EFs reported from other studies in Australia and the Northern Hemisphere which is likely due to high halogen content in vegetation on Robbins Island. This work demonstrates the substantial impact that BB plumes can have on the composition of marine air, and the significant changes that can occur as the plume interacts with terrestrial, aged urban and marine emission sources.


Sign in / Sign up

Export Citation Format

Share Document