scholarly journals Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide

2010 ◽  
Vol 10 (2) ◽  
pp. 3717-3754 ◽  
Author(s):  
M. T. Woodhouse ◽  
K. S. Carslaw ◽  
G. W. Mann ◽  
S. M. Vallina ◽  
M. Vogt ◽  
...  

Abstract. The emission of dimethylsulphide (DMS) gas by phytoplankton and the subsequent formation of aerosol has long been suggested as an important climate regulation mechanism. The key aerosol quantity is the number concentration of cloud condensation nuclei (CCN), but until recently global models did not include the necessary aerosol physics to quantify CCN. Here we use a global aerosol microphysics model to calculate the sensitivity of CCN to changes in DMS emission using multiple present-day and future sea-surface DMS climatologies. Calculated annual fluxes of DMS to the atmosphere for the five model-derived and one observations based present day climatologies are in the range 15.1 to 32.3 Tg a−1 sulphur. The impact of DMS climatology on surface level CCN concentrations was calculated in terms of summer and winter hemispheric mean values of ΔCCN/ΔFluxDMS, which varied between −51 and +147 cm−3/(mg m−2 day−1 sulphur), with a mean of 56 cm−3/(mg m−2 day−1 sulphur). The range is due to CCN production in the atmosphere being strongly dependent on the spatial distribution of the emitted DMS. The DMS flux from a future globally warmed climatology was 0.2 Tg a−1 sulphur higher than present day with a mean CCN response of 95 cm−3/(mg m−2 day−1 sulphur) relative to present day. The largest CCN response was seen in the southern Ocean, contributing to a Southern Hemisphere mean annual increase of less than 0.2%. We show that the changes in DMS flux and CCN concentration between the present day and global warming scenario are similar to interannual differences due to variability in windspeed. In summary, although DMS makes a significant contribution to global marine CCN concentrations, the sensitivity of CCN to potential future changes in DMS flux is very low. This finding, together with the predicted small changes in future seawater DMS concentrations, suggests that the role of DMS in climate regulation is very weak.

2010 ◽  
Vol 10 (16) ◽  
pp. 7545-7559 ◽  
Author(s):  
M. T. Woodhouse ◽  
K. S. Carslaw ◽  
G. W. Mann ◽  
S. M. Vallina ◽  
M. Vogt ◽  
...  

Abstract. The emission of dimethyl-sulphide (DMS) gas by phytoplankton and the subsequent formation of aerosol has long been suggested as an important climate regulation mechanism. The key aerosol quantity is the number concentration of cloud condensation nuclei (CCN), but until recently global models did not include the necessary aerosol physics to quantify CCN. Here we use a global aerosol microphysics model to calculate the sensitivity of CCN to changes in DMS emission using multiple present-day and future sea-surface DMS climatologies. Calculated annual fluxes of DMS to the atmosphere for the five model-derived and one observations based present day climatologies are in the range 15.1 to 32.3 Tg a−1 sulphur. The impact of DMS climatology on surface level CCN concentrations was calculated in terms of summer and winter hemispheric mean values of ΔCCN/ΔFluxDMS, which varied between −43 and +166 cm−3/(mg m−2 day−1 sulphur), with a mean of 63 cm−3/(mg m−2 day−1 sulphur). The range is due to CCN production in the atmosphere being strongly dependent on the spatial distribution of the emitted DMS. The relative sensitivity of CCN to DMS (i.e. fractional change in CCN divided by fractional change in DMS flux) depends on the abundance of non-DMS derived aerosol in each hemisphere. The relative sensitivity averaged over the five present day DMS climatologies is estimated to be 0.02 in the northern hemisphere (i.e. a 0.02% change in CCN for a 1% change in DMS) and 0.07 in the southern hemisphere where aerosol abundance is lower. In a globally warmed scenario in which the DMS flux increases by ~1% relative to present day we estimate a ~0.1% increase in global mean CCN at the surface. The largest CCN response occurs in the Southern Ocean, contributing to a Southern Hemisphere mean annual increase of less than 0.2%. We show that the changes in DMS flux and CCN concentration between the present day and global warming scenario are similar to interannual differences due to variability in windspeed. In summary, although DMS makes a significant contribution to global marine CCN concentrations, the sensitivity of CCN to potential future changes in DMS flux is very low. This finding, together with the predicted small changes in future seawater DMS concentrations, suggests that the role of DMS in climate regulation is very weak.


2008 ◽  
Vol 42 (22) ◽  
pp. 5728-5730 ◽  
Author(s):  
Matthew T. Woodhouse ◽  
Graham W. Mann ◽  
Kenneth S. Carslaw ◽  
Olivier Boucher

2013 ◽  
Vol 13 (12) ◽  
pp. 32353-32389 ◽  
Author(s):  
G. P. Almeida ◽  
J. Brito ◽  
C. A. Morales ◽  
M. F. Andrade ◽  
P. Artaxo

Abstract. Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.2%, 0.4%, 0.6%, 0.8% and 1.0% water supersaturation and were subsequently compared with Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained deploying for the first time in SPMA an Aerosol Chemical Ionization Monitor (ACSM). CCN closure analyses were performed considering internal mixture. Average aerosol composition during the studied period yielded 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 μg m−3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm−3, being a large fraction in the nucleation mode. CCN concentrations were on average 1090 ± 328 cm−3 and 3570 ± 1695 cm−3 at SS = 0.2% and SS = 1.0%, respectively. Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter. Considering the bulk composition alone, CCN concentrations were substantially overpredicted (29.6 ± 45.1% at 0.2% supersaturation and 57.3 ± 30.0% at 1.0% supersaturation). Overall, the impact of composition on the calculated NCCN decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN. Introducing a size-dependent chemical composition based on filter measurements from previous campaigns has considerably improved simulated values for NCCN (average overprediction error 3.0 ± 33.4% at 0.20% supersaturation and average under prediction error 2.4 ± 20.5% at 1.0% supersaturation). This study provides the first insight on aerosol real-time composition and hygroscopicity on a~site strongly impacted by emissions of a unique vehicular fleet due to the extensive biofuel usage.


2020 ◽  
Vol 20 (3) ◽  
pp. 1301-1316
Author(s):  
Georgia Sotiropoulou ◽  
Sylvia Sullivan ◽  
Julien Savre ◽  
Gary Lloyd ◽  
Thomas Lachlan-Cope ◽  
...  

Abstract. In situ measurements of Arctic clouds frequently show that ice crystal number concentrations (ICNCs) are much higher than the number of available ice-nucleating particles (INPs), suggesting that secondary ice production (SIP) may be active. Here we use a Lagrangian parcel model (LPM) and a large-eddy simulation (LES) to investigate the impact of three SIP mechanisms (rime splintering, break-up from ice–ice collisions and drop shattering) on a summer Arctic stratocumulus case observed during the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) campaign. Primary ice alone cannot explain the observed ICNCs, and drop shattering is ineffective in the examined conditions. Only the combination of both rime splintering (RS) and collisional break-up (BR) can explain the observed ICNCs, since both of these mechanisms are weak when activated alone. In contrast to RS, BR is currently not represented in large-scale models; however our results indicate that this may also be a critical ice-multiplication mechanism. In general, low sensitivity of the ICNCs to the assumed INP, to the cloud condensation nuclei (CCN) conditions and also to the choice of BR parameterization is found. Finally, we show that a simplified treatment of SIP, using a LPM constrained by a LES and/or observations, provides a realistic yet computationally efficient way to study SIP effects on clouds. This method can eventually serve as a way to parameterize SIP processes in large-scale models.


2019 ◽  
Vol 19 (13) ◽  
pp. 8845-8861 ◽  
Author(s):  
Juntao Wang ◽  
Yanjie Shen ◽  
Kai Li ◽  
Yang Gao ◽  
Huiwang Gao ◽  
...  

Abstract. Determination of the updated concentrations of atmospheric particles (Ncn) and the concentrations of cloud condensation nuclei (Nccn) over the northwestern Pacific Ocean (NWPO) are important to accurately evaluate the influence of aerosol outflow from the Asian continent on the climate by considering the rapid changes in emissions of air pollutants therein. However, field observations in the last two decades are scarce. We conducted a cruise campaign over the NWPO to simultaneously measure Ncn, Nccn and the size distribution of aerosol particles from day of year (DOY) 81 to DOY 108 of 2014. The mean values of Nccn at supersaturation (SS) of levels 0.2 % and 0.4 % were 0.68±0.38×103 and 1.1±0.67×103 cm−3, respectively, with an average of 2.8±1.0×103 cm−3 for Ncn during the cruise over the NWPO. All are approximately 1 order of magnitude larger than spring observations made during the preceding two decades in the remote marine atmosphere. The larger values, against the marine natural background reported in the literature, imply an overwhelming contribution from continental inputs. The calculated activity ratios (ARs) of the cloud condensation nuclei (CCN) were 0.30±0.11 and 0.46±0.19 at SS levels of 0.2 % and 0.4 %, respectively, which are almost the same as those of upwind semi-urban sites. High Nccn and CCN activities were observed from DOY 98 to DOY 102, when the oceanic zone received even stronger continental input. Excluding biomass burning (BB) and dust aerosols, good correlation between Nccn at 0.4 % SS and the number concentrations of > 60 nm particles (N>60 nm) was obtained during the entire cruise period, with a slope of 0.98 and R2=0.94, and the corresponding effective hygroscopicity parameter (κ) was estimated to be 0.40. A bimodal size distribution pattern of the particle number concentration was generally observed during the entire campaign when the N>90 nm varied largely. However, the N<30 nm, accounting for approximately one-third of the total number concentration, varied narrowly, and two NPF events associated with vertical transport were observed. This implies that a pool of nucleation-mode atmospheric particles is aloft. BB and dust events were observed over the NWPO, but their aerosol contributions to Ncn and Nccn were minor (i.e., 10 % or less) on a monthly timescale.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Vandana Jha ◽  
William R. Cotton ◽  
Gustavo G. Carrió ◽  
Robert Walko

In this study, we examine the cumulative effect of pollution aerosol and dust acting as cloud nucleating aerosol;cloud condensation nuclei (CCN), giant cloud condensation nuclei, and ice nuclei (IN), on orographic precipitation in the Rocky Mountains. We analyze the results of sensitivity studies for specific cases in 2004-2005 winter season to analyze the relative impact of aerosol pollution and dust acting as CCN and IN on precipitation in the Colorado River Basin. Dust is varied from 3 to 10 times in the experiments, and the response is found to be nonmonotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN effects are dominant. For a relatively dry system high concentrations of dust can result in overseeding the clouds and reductions in precipitation. However, when adding dust to a system with warmer cloud bases where drizzle formation is active, the response is nonmonotonic.


Author(s):  
Abhijit Deshpande ◽  
Marcellin Zahui

Analysis and simulation of an acoustic cloud condensation nuclei counter is presented. The instrument is capable of accurately counting the number of micro scale water droplets impacting a water surface. The sound produced underwater by the water droplets is determined when the droplets strike the water surface with an impact velocity equal to either their terminal or maximum velocity. First, the terminal velocities of the droplets are calculated using Stoke’s law and compared to measured velocities from Gunn and Kinzer. Then the maximum velocities that these droplets can sustain without breaking are calculated as a function of droplet diameter. Second, the sound due to droplet impact is estimated. Due to their size and water surface tension, there is no bubble formation at impact when the droplets are falling with terminal velocities. However conditions for regular bubble entrainments are established and limit velocities are calculated. Assuming that the micro water droplets can be accelerated, the maximum velocities for no bubble entrainments are calculated. The results show that the level of the sound produced by individual micro scale droplet falling with terminal velocity is so small that experimental verification is not possible. However, reasonable level of acoustic energy can be obtained by increasing the impact velocities of the droplets or by measuring the sound radiated by a group of impacting droplets. Finally, the droplets counting process is simulated using a water surface of one centimeter squared and a vertical growth chamber.


2018 ◽  
Vol 18 (23) ◽  
pp. 17047-17059 ◽  
Author(s):  
Amy Solomon ◽  
Gijs de Boer ◽  
Jessie M. Creamean ◽  
Allison McComiskey ◽  
Matthew D. Shupe ◽  
...  

Abstract. This study investigates the interactions between cloud dynamics and aerosols in idealized large-eddy simulations (LES) of Arctic mixed-phase stratocumulus clouds (AMPS) observed at Oliktok Point, Alaska, in April 2015. This case was chosen because it allows the cloud to form in response to radiative cooling starting from a cloud-free state, rather than requiring the cloud ice and liquid to adjust to an initial cloudy state. Sensitivity studies are used to identify whether there are buffering feedbacks that limit the impact of aerosol perturbations. The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations; i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. The dominant effect of ice in the simulated mixed-phase cloud is a thinning rather than a glaciation, causing the mixed-phase clouds to radiate as a grey body and the radiative properties of the cloud to be more sensitive to aerosol perturbations. It is demonstrated that allowing prognostic CCN and INPs causes a layering of the aerosols, with increased concentrations of CCN above cloud top and increased concentrations of INPs at the base of the cloud-driven mixed layer. This layering contributes to the maintenance of the cloud liquid, which drives the dynamics of the cloud system.


Sign in / Sign up

Export Citation Format

Share Document