scholarly journals Umbilical cord blood CD34+ cells administration improved neurobehavioral status and alleviated brain injury in a mouse model of cerebral palsy

Author(s):  
Yanqun Chang ◽  
Shouheng Lin ◽  
Yongsheng Li ◽  
Song Liu ◽  
Tianbao Ma ◽  
...  

Abstract Purpose Cerebral palsy (CP) is the most common neuromuscular disease in children, and currently, there is no cure. Several studies have reported the benefits of umbilical cord blood (UCB) cell treatment for CP. However, these studies either examined the effects of UCB cell fraction with a short experimental period or used neonatal rat models for a long-term study which displayed an insufficient immunological reaction and clearance of human stem cells. Here, we developed a CP model by hypoxia-ischemic injury (HI) using immunodeficient mice and examined the effects of human UCB CD34+ hematopoietic stem cells (HSCs) on CP therapy over a period of 8 weeks. Methods Sixty postnatal day-9 (P9) mouse pups were randomly divided into 4 groups (n = 15/group) as follows: (1) sham operation (control group), (2) HI-induced CP model, (3) CP model with CD34+ HSC transplantation, and (4) CP model with CD34- cell transplantation. Eight weeks after insult, the sensorimotor performance was analyzed by rotarod treadmill, gait dynamic, and open field assays. The pathological changes in brain tissue of mice were determined by HE staining, Nissl staining, and MBP immunohistochemistry of the hippocampus in the mice. Results HI brain injury in mice pups resulted in significant behavioral deficits and loss of neurons. Both CD34+ HSCs and CD34- cells improved the neurobehavioral statuses and alleviated the pathological brain injury. In comparison with CD34- cells, the CD34+ HSC compartments were more effective. Conclusion These findings indicate that CD34+ HSC transplantation was neuroprotective in neonatal mice and could be an effective therapy for CP.

Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2125-2133 ◽  
Author(s):  
Robert W. Storms ◽  
Margaret A. Goodell ◽  
Alan Fisher ◽  
Richard C. Mulligan ◽  
Clay Smith

Abstract A novel Hoechst 33342 dye efflux assay was recently developed that identifies a population of hematopoietic cells termed side population (SP) cells. In the bone marrow of multiple species, including mice and primates, the SP is composed primarily of CD34−cells, yet has many of the functional properties of hematopoietic stem cells (HSCs). This report characterizes SP cells from human umbilical cord blood (UCB). The SP in unfractionated UCB was enriched for CD34+ cells but also contained a large population of CD34− cells, many of which were mature lymphocytes. SP cells isolated from UCB that had been depleted of lineage-committed cells (Lin− UCB) contained CD34+ and CD34− cells in approximately equivalent proportions. Similar to previous descriptions of human HSCs, the CD34+Lin− SP cells were CD38dimHLA-DRdimThy-1dimCD45RA−CD71−and were enriched for myelo-erythroid precursors. In contrast, the CD34−Lin− SP cells were CD38−HLA-DR−Thy-1−CD71−and failed to generate myelo-erythroid progeny in vitro. The majority of these cells were CD7+CD11b+CD45RA+, as might be expected of early lymphoid cells, but did not express other lymphoid markers. The CD7+CD34−Lin− UCB SP cells did not proliferate in simple suspension cultures but did differentiate into natural killer cells when cultured on stroma with various cytokines. In conclusion, the human Lin− UCB SP contains both CD34+ multipotential stem cells and a novel CD7+CD34−Lin− lymphoid progenitor. This observation adds to the growing body of evidence that CD34− progenitors exist in humans.


2021 ◽  
Vol 10 (2) ◽  
pp. 293
Author(s):  
Gee-Hye Kim ◽  
Jihye Kwak ◽  
Sung Hee Kim ◽  
Hee Jung Kim ◽  
Hye Kyung Hong ◽  
...  

Umbilical cord blood (UCB) is used as a source of donor cells for hematopoietic stem cell (HSC) transplantation. The success of transplantation is dependent on the quality of cord blood (CB) units for maximizing the chance of engraftment. Improved outcomes following transplantation are associated with certain factors of cryopreserved CB units: total volume and total nucleated cell (TNC) count, mononuclear cell (MNC) count, and CD34+ cell count. The role of the storage period of CB units in determining the viability and counts of cells is less clear and is related to the quality of cryopreserved CB units. Herein, we demonstrate the recovery of viable TNCs and CD34+ cells, as well as the MNC viability in 20-year-old cryopreserved CB units in a CB bank (MEDIPOST Co., Ltd., Seongnam-si, Gyeonggi-do, Korea). In addition, cell populations in CB units were evaluated for future clinical applications. The stable recovery rate of the viability of cryopreserved CB that had been stored for up to 20 years suggested the possibility of uses of the long-term cryopreservation of CB units. Similar relationships were observed in the recovery of TNCs and CD34+ cells in units of cryopreserved and fresh CB. The high-viability recovery of long-term cryopreserved CB suggests that successful hematopoietic stem cell (HSC) transplantation and other clinical applications, which are suitable for treating incurable diseases, may be performed regardless of long-term storage.


2017 ◽  
Vol 39 (3) ◽  
pp. 164-170 ◽  
Author(s):  
T O Kalynychenko

Significant progress in the promotion of procedural technologies associated with the transplantation of hematopoietic stem cells caused a rapid increase in activity. The exchange of hematopoietic stem cells for unrelated donor transplantations is now much easier due to the relevant international professional structures and organizations established to support cooperation and standard setting, as well as rules for the functioning of both national donor registries and cord blood banks. These processes are increasing every year and are contributing to the outpacing rates of development in this area. Products within their country should be regulated by the competent government authorities. This study analyzes the work of international and national levels of support for transplantation activity in the field of unrelated hematopoietic stem cell transplantation, the standardization order of technologies, as well as data that justify the need to create a network of donated umbilical cord blood banks in Ukraine as a factor in the development of allogeneic transplantation. This will promote the accessibility of international standards for the treatment of serious diseases for Ukrainian citizens.


2014 ◽  
Vol 6 (3) ◽  
pp. 115
Author(s):  
Anna Meiliana ◽  
Andi Wijaya

BACKGROUND: Since the first umbilical cord blood (UCB) transplant, performed 25 years ago, UCB banks have been established worldwide for the collection and cryopreservation of UCB for autologous and allogeneic transplants.CONTENT: Much has been learned in a relatively short time on the properties of UCB hematopoietic progenitors and their clinical application. More interestingly, non-hematopoietic stem cells have been isolated from UCB. These cells can be grown and differentiated into various tissues including bone, cartilage, liver, pancreas, nerve, muscle and so on. The non-hematopoietic stem cells have an advantage over other sources of stem cells, such as embryonic stem cells or induced pluripotent stem cells, because their supply is unlimited, they can be used in autologous or allogeneic situations, they need minimal manipulation and they raise no ethical concerns. Future studies will test the potential of UCB cells for the treatment of several diseases including, among other possibilities, diabetes, arthritis, burns, neurological disorder and myocardial infarction.SUMMARY: In addition to hematopoietic stem cells, UCB contain a large number of non-hematopoietic stem cells. In the absence of ethical concern, the unlimited supply of UCB cells explains the increasing interest of using UCB for developing regenerative medicine.KEYWORDS: UCB, transplantation, UCB bank, HSC, MSC, CD34, CD133, VSEL


2016 ◽  
Vol 22 ◽  
pp. 1673-1681 ◽  
Author(s):  
Yanxin Huang ◽  
Qin Yan ◽  
Rongshan Fan ◽  
Shupeng Song ◽  
Hong Ren ◽  
...  

2019 ◽  
Vol 120 (7) ◽  
pp. 12018-12026 ◽  
Author(s):  
Maryam Darvish ◽  
Zahra Payandeh ◽  
Fatemeh Soleimanifar ◽  
Behnaz Taheri ◽  
Masoud Soleimani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document