Predictability of Indian Ocean sea surface temperature using canonical correlation analysis

2004 ◽  
Vol 22 (5) ◽  
pp. 481-497 ◽  
Author(s):  
D. C. Collins ◽  
C. J. C. Reason ◽  
F. Tangang
2019 ◽  
Vol 11 (4) ◽  
pp. 1481-1494
Author(s):  
Ahmad Reza Ghasemi

Abstract This paper studies the impact of northwest Indian Ocean (NIO) sea surface temperature (SST) anomalies between the regions 0–29°N and 45–80°E and El Niño–Southern Oscillation (ENSO) on the winter precipitation in Iran. The data include monthly precipitation from 45 weather stations in Iran, monthly NIO SST with a 2° horizontal resolution and Southern Oscillation Index (SOI) for a 40-year period (1975–2014). This study utilizes canonical correlation analysis and partial correlation to investigate the simultaneous relationship between SST, SOI, and winter precipitation variability. A running correlation method is also used to test the stationarity of these relationships. Analyses of the results reveal that both NIO SST and ENSO index are significantly correlated with the winter precipitation in Iran but with opposite sign. Moreover, a clear variability exists in the correlations revealing a distinct non-stationarity in the relationship over time. The results of partial correlation analysis suggest that the ENSO index has a stronger effect on the winter precipitation in Iran than NIO SST.


2008 ◽  
Vol 21 (11) ◽  
pp. 2451-2465 ◽  
Author(s):  
Yan Du ◽  
Tangdong Qu ◽  
Gary Meyers

Abstract Using results from the Simple Ocean Data Assimilation (SODA), this study assesses the mixed layer heat budget to identify the mechanisms that control the interannual variation of sea surface temperature (SST) off Java and Sumatra. The analysis indicates that during the positive Indian Ocean Dipole (IOD) years, cold SST anomalies are phase locked with the season cycle. They may exceed −3°C near the coast of Sumatra and extend as far westward as 80°E along the equator. The depth of the thermocline has a prominent influence on the generation and maintenance of SST anomalies. In the normal years, cooling by upwelling–entrainment is largely counterbalanced by warming due to horizontal advection. In the cooling episode of IOD events, coastal upwelling–entrainment is enhanced, and as a result of mixed layer shoaling, the barrier layer no longer exists, so that the effect of upwelling–entrainment can easily reach the surface mixed layer. Horizontal advection spreads the cold anomaly to the interior tropical Indian Ocean. Near the coast of Java, the northern branch of an anomalous anticyclonic circulation spreads the cold anomaly to the west near the equator. Both the anomalous advection and the enhanced, wind-driven upwelling generate the cold SST anomaly of the positive IOD. At the end of the cooling episode, the enhanced surface thermal forcing overbalances the cooling effect by upwelling/entrainment, and leads to a warming in SST off Java and Sumatra.


2011 ◽  
Vol 24 (5) ◽  
pp. 1378-1395 ◽  
Author(s):  
Adrienne Tivy ◽  
Stephen E. L. Howell ◽  
Bea Alt ◽  
John J. Yackel ◽  
Thomas Carrieres

Abstract Canonical correlation analysis (CCA) is used to estimate the levels and sources of seasonal forecast skill for July ice concentration in Hudson Bay over the 1971–2005 period. July is an important transition month in the seasonal cycle of sea ice in Hudson Bay because it is the month when the sea ice clears enough to allow the first passage of ships to the Port of Churchill. Sea surface temperature (quasi global, North Atlantic, and North Pacific), Northern Hemisphere 500-mb geopotential height (z500), sea level pressure (SLP), and regional surface air temperature (SAT) are tested as predictors at 3-, 6-, and 9-month lead times. The model with the highest skill has three predictors—fall North Atlantic SST, fall z500, and fall SAT—and significant tercile forecast skill covering 61% of the Hudson Bay region. The highest skill for a single-predictor model is from fall North Atlantic SST (6-month lead). Fall SST explains 69% of the variance in July ice concentration in Hudson Bay and a possible atmospheric link that accounts for the lagged relationship is presented. CCA diagnostics suggest that changes in the subpolar North Atlantic gyre and the Atlantic multidecadal oscillation (AMO), reflected in sea surface temperature, precedes a deepening/weakening of the winter upper-air ridge northwest of Hudson Bay. Changes in the height of the ridge are reflected in the strength of the winter northwesterly winds over Hudson Bay that have a direct impact on the winter ice thickness distribution; anomalies in winter ice severity are later reflected in the pattern and timing of spring breakup. July ice concentration in Hudson Bay has declined by approximately 20% per decade between 1979 and 2007, and the hypothesized link to the AMO may help explain this significant loss of ice.


2018 ◽  
Vol 35 (7) ◽  
pp. 1441-1455 ◽  
Author(s):  
Kalpesh Patil ◽  
M. C. Deo

AbstractThe prediction of sea surface temperature (SST) on the basis of artificial neural networks (ANNs) can be viewed as complementary to numerical SST predictions, and it has fairly sustained in the recent past. However, one of its limitations is that such ANNs are site specific and do not provide simultaneous spatial information similar to the numerical schemes. In this work we have addressed this issue by presenting basin-scale SST predictions based on the operation of a very large number of individual ANNs simultaneously. The study area belongs to the basin of the tropical Indian Ocean (TIO) having coordinates of 30°N–30°S, 30°–120°E. The network training and testing are done on the basis of HadISST data of the past 140 yr. Monthly SST anomalies are predicted at 3813 nodes in the basin and over nine time steps into the future with more than 20 million ANN models. The network testing indicated that the prediction skill of ANNs is attractive up to certain lead times depending on the subbasin. The ANN models performed well over both the western Indian Ocean (WIO) and eastern Indian Ocean (EIO) regions up to 5 and 4 months lead time, respectively, as judged by the error statistics of the correlation coefficient and the normalized root-mean-square error. The prediction skill of the ANN models for the TIO region is found to be better than the physics-based coupled atmosphere–ocean models. It is also observed that the ANNs are capable of providing an advanced warning of the Indian Ocean dipole as well as abnormal basin warming.


Sign in / Sign up

Export Citation Format

Share Document