Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system. Part 1: recent climate simulation (1971–2000)

2006 ◽  
Vol 28 (7-8) ◽  
pp. 759-780 ◽  
Author(s):  
Eun-Soon Im ◽  
Won-Tae Kwon ◽  
Joong-Bae Ahn ◽  
Filippo Giorgi
2013 ◽  
Vol 57 (3) ◽  
pp. 173-186 ◽  
Author(s):  
X Wang ◽  
M Yang ◽  
G Wan ◽  
X Chen ◽  
G Pang

2010 ◽  
Vol 23 (7) ◽  
pp. 1854-1873 ◽  
Author(s):  
E-S. Im ◽  
E. Coppola ◽  
F. Giorgi ◽  
X. Bi

Abstract A mosaic-type parameterization of subgrid-scale topography and land use (SubBATS) is applied for a high-resolution regional climate simulation over the Alpine region with a regional climate model (RegCM3). The model coarse-gridcell size in the control simulation is 15 km while the subgridcell size is 3 km. The parameterization requires disaggregation of atmospheric variables from the coarse grid to the subgrid and aggregation of surface fluxes from the subgrid to the coarse grid. Two 10-yr simulations (1983–92) are intercompared, one without (CONT) and one with (SUB) the subgrid scheme. The authors first validate the CONT simulation, showing that it produces good quality temperature and precipitation statistics, showing in particular a good performance compared to previous runs of this region. The subgrid scheme produces much finer detail of temperature and snow distribution following the topographic disaggregation. It also tends to form and melt snow more accurately in response to the heterogeneous characteristics of topography. In particular, validation against station observations shows that the SUB simulation improves the model simulation of the surface hydrologic cycle, in particular snow and runoff, especially at high-elevation sites. Finally, two experiments explore the model sensitivity to different subgrid disaggregation assumptions, namely, the temperature lapse rate and an empirical elevation-based disaggregation of precipitation.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ji-Woo Lee ◽  
Suryun Ham ◽  
Song-You Hong ◽  
Kei Yoshimura ◽  
Minsu Joh

This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM), namely, the Global/Regional Integrated Model System (GRIMs), Regional Model Program (RMP). The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070) simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.


2012 ◽  
Vol 40 (5-6) ◽  
pp. 1415-1433 ◽  
Author(s):  
Leticia Hernández-Díaz ◽  
René Laprise ◽  
Laxmi Sushama ◽  
Andrey Martynov ◽  
Katja Winger ◽  
...  

2009 ◽  
Vol 35 (5) ◽  
pp. 721-740 ◽  
Author(s):  
Vincenzo Artale ◽  
◽  
Sandro Calmanti ◽  
Adriana Carillo ◽  
Alessandro Dell’Aquila ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document