Relative contribution of soil moisture and snow mass to seasonal climate predictability: a pilot study

2009 ◽  
Vol 34 (6) ◽  
pp. 797-818 ◽  
Author(s):  
Hervé Douville
Author(s):  
Long Zhao ◽  
Kun Yang ◽  
Jie He ◽  
Hui Zheng ◽  
Donghai Zheng

2020 ◽  
Author(s):  
Stefano Manzoni ◽  
Arjun Chakrawal ◽  
Thomas Fischer ◽  
Joshua P. Schimel ◽  
Amilcare Porporato ◽  
...  

Abstract. Soil drying and wetting cycles promote carbon (C) release through large heterotrophic respiration pulses at rewetting, known as Birch effect. Empirical evidence shows that drier conditions before rewetting and larger changes in soil moisture at rewetting cause larger respiration pulses. Because soil moisture varies in response to rainfall, also these respiration pulses depend on the random timing and intensity of precipitation. In addition to rewetting pulses, heterotrophic respiration continues during soil drying, eventually ceasing when soils are too dry to sustain microbial activity. The importance of respiration pulses in contributing to the overall soil respiration flux has been demonstrated empirically, but no theoretical investigation has so far evaluated how the relative contribution of these pulses may change along climatic gradients or as precipitation regimes shift in a given location. To fill this gap, we start by assuming that rewetting pulses and respiration rates during soil drying can be treated as random variables dependent on soil moisture fluctuations, and develop a stochastic model for soil heterotrophic respiration rates that analytically links the statistical properties of respiration to those of precipitation. Model results show that both the mean rewetting pulse respiration and the mean respiration during drying increase with increasing mean precipitation. However, the contribution of respiration pulses to the total heterotrophic respiration increases with decreasing precipitation frequency and to a lesser degree with decreasing precipitation depth, leading to an overall higher contribution of respiration pulses under future more intermittent and intense precipitation. Moreover, the variability of both components of soil respiration is also predicted to increase under these conditions. Therefore, our results suggest that with future more intermittent precipitation, respiration pulses and the associated nutrient release will intensify and become more variable, contributing more to soil biogeochemical cycling.


2021 ◽  
Author(s):  
Sana Khan ◽  
Dalia B. Kirschbaum ◽  
Thomas Stanley ◽  
Pukar Amatya ◽  
Robert Emberson

<p>Numerical weather models are used in a variety of applications, including a growing body of landslide hazard assessment models. Heretofore, these applications have not included global landslide forecasts but this remains an important gap in better understanding the future spatiotemporal impact that landslides can have on populations and infrastructure. We explore the feasibility of using a precipitation forecast within the Landslide Hazard Assessment for Situational Awareness (LHASA) v2.0 model, which is designed to provide estimates of potential landslide hazard for rainfall triggers. Data on precipitation, soil moisture, and snow mass is available from NASA’s Goddard Earth Observing System Forward Processing product (GEOS-FP), which provides global scale products in both forecast and assimilation modes. These variables are incorporated into the LHASA Forecast model by replacing satellite rainfall estimates from the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) with forecasted rainfall from GEOS-FP. The LHASA Forecast model also uses soil moisture and snow mass estimates from GEOS-FP rather than soil moisture and snow mass data from the Soil Moisture Active-Passive (SMAP) level 4 product. The LHASA Forecast model was run retrospectively at a daily scale with forecasted precipitation with up to a 3 day lead time. Results are compared with the LHASA v2.0 model that uses SMAP and IMERG data. Analysis of the LHASA Forecast system was conducted in several different ways. First, performance was assessed with categorical and continuous statics to determine how closely the forecasted probabilities match that of the LHASA v2.0 nowcast landslide probabilities. The outputs of LHASA v2.0 and LHASA Forecast are also compared for several high impact rainfall events that triggered landslides to determine the skill in identifying the potential high hazard areas. Preliminary results suggest that for large precipitation events (e.g. tropical storms), the same general hazard areas are identified; however, this can vary largely by geography and precipitation regime, owing to differences in spatial resolution and phase errors of the forecasted precipitation. This presentation outlines the preliminary work to address forecasted landslide hazard globally and discusses next steps towards improving landslide forecast skill.</p><p> </p>


2020 ◽  
Author(s):  
Ruud P. Bartholomeus ◽  
Marjolein H.J. van Huijgevoort ◽  
Arnaut van Loon

<p><span>Agricultural crop yields depend largely on soil moisture conditions in the root zone. Climate change leads to more prolonged drought periods that alternate with more intensive rainfall events. With unaltered water management practices, reduced crop yield due to drought stress will increase. Therefore, both farmers and water management authorities search for opportunities to manage risks of decreasing crop yields. Available groundwater sources for irrigation purposes are increasingly under pressure due to the regional coexistence of land use functions that are critical to groundwater levels or compete for available water. At the same time, treated wastewater from industries and domestic wastewater treatment plants are quickly discharged via surface waters towards sea. Exploitation of these freshwater sources may be an effective strategy to balance regional water supply and agricultural water demand. We present results of a pilot study in a drought sensitive region in the Netherlands, concerning agricultural water supply through reuse of industrial treated wastewater. The Bavaria Beer Brewery discharges treated wastewater to the surface water. Nevertheless, neighboring farmers invest in sprinkler irrigation to maintain their crop production during drought periods. Doing so, increasing pressure is put on the regional groundwater availability. Within a pilot study, a sub-irrigation system has been installed, by using subsurface drains, interconnected through a collector drain, and connected to an inlet control pit for the treated wastewater to enter the drainage system. Sub-irrigation is a subsurface irrigation method that can be more efficient than classical, aboveground irrigation methods using sprinkler installations. Additionally, sub-irrigated water that is not used for plant transpiration recharges the groundwater. We combine both process-based modeling of the soil-plant-atmosphere system and field experiments to i) investigate the amount of water that needs to be and that can be sub-irrigated, and ii) quantify the effect on soil moisture availability and herewith reduced needs for aboveground irrigation from groundwater.</span></p>


Sign in / Sign up

Export Citation Format

Share Document