Contribution of realistic soil moisture initial conditions to boreal summer climate predictability

2008 ◽  
Vol 32 (1) ◽  
pp. 75-93 ◽  
Author(s):  
S. Conil ◽  
H. Douville ◽  
S. Tyteca
2021 ◽  
pp. 1-55
Author(s):  
Pengfei Shi ◽  
Bin Wang ◽  
Yujun He ◽  
Hui Lu ◽  
Kun Yang ◽  
...  

AbstractLand surface is a potential source of climate predictability over the Northern Hemisphere mid-latitudes but has received less attention than sea surface temperature in this regard. This study quantified the degree to which realistic land initialization contributes to interannual climate predictability over Europe based on a coupled climate system model named FGOALS-g2. The potential predictability provided by the initialization, which incorporates the soil moisture and soil temperature of a land surface reanalysis product into the coupled model with a DRP-4DVar-based weakly coupled data assimilation (WCDA) system, was analyzed first. The effective predictability (i.e., prediction skill) of the hindcasts by FGOALS-g2 with realistic and well-balanced initial conditions from the initialization were then evaluated. Results show an enhanced interannual prediction skill for summer surface air temperature and precipitation in the hindcast over Europe, demonstrating the potential benefit from realistic land initialization. This study highlights the significant contributions of land surface to interannual predictability of summer climate over Europe.


2011 ◽  
Vol 24 (12) ◽  
pp. 2963-2982 ◽  
Author(s):  
Andrea Alessandri ◽  
Andrea Borrelli ◽  
Silvio Gualdi ◽  
Enrico Scoccimarro ◽  
Simona Masina

Abstract This study investigates the predictability of tropical cyclone (TC) seasonal count anomalies using the Centro Euro-Mediterraneo per i Cambiamenti Climatici–Istituto Nazionale di Geofisica e Vulcanologia (CMCC-INGV) Seasonal Prediction System (SPS). To this aim, nine-member ensemble forecasts for the period 1992–2001 for two starting dates per year were performed. The skill in reproducing the observed TC counts has been evaluated after the application of a TC location and tracking detection method to the retrospective forecasts. The SPS displays good skill in predicting the observed TC count anomalies, particularly over the tropical Pacific and Atlantic Oceans. The simulated TC activity exhibits realistic geographical distribution and interannual variability, thus indicating that the model is able to reproduce the major basic mechanisms that link the TCs’ occurrence with the large-scale circulation. TC count anomalies prediction has been found to be sensitive to the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations performed without assimilated initial conditions, the results indicate that the assimilation significantly improves the prediction of the TC count anomalies over the eastern North Pacific Ocean (ENP) and northern Indian Ocean (NI) during boreal summer. During the austral counterpart, significant progresses over the area surrounding Australia (AUS) and in terms of the probabilistic quality of the predictions also over the southern Indian Ocean (SI) were evidenced. The analysis shows that the improvement in the prediction of anomalous TC counts follows the enhancement in forecasting daily anomalies in sea surface temperature due to subsurface ocean initialization. Furthermore, the skill changes appear to be in part related to forecast differences in convective available potential energy (CAPE) over the ENP and the North Atlantic Ocean (ATL), in wind shear over the NI, and in both CAPE and wind shear over the SI.


2021 ◽  
Author(s):  
Stella Jes Varghese ◽  
Kavirajan Rajendran ◽  
Sajani Surendran ◽  
Arindam Chakraborty

<p>Indian summer monsoon seasonal reforecasts by CFSv2, initiated from January (4-month lead time, L4) through May (0-month lead time, L0) initial conditions (ICs), are analysed to investigate causes for the highest Indian summer monsoon rainfall (ISMR) forecast skill of CFSv2 with February (3-month lead time, L3) ICs. Although theory suggests forecast skill should degrade with increase in lead-time, CFSv2 shows highest skill with L3, due to its forecasting of ISMR excess of 1983 which other ICs failed to forecast. In contrast to observation, in CFSv2, ISMR extremes are largely decided by sea surface temperature (SST) variation over central Pacific (NINO3.4) associated with El Niño-Southern Oscillation (ENSO), where ISMR excess (deficit) is associated with La Niña (El Niño) or cooling (warming) over NINO3.4. In 1983, CFSv2 with L3 ICs forecasted strong La Niña during summer, which resulted in 1983 ISMR excess. In contrast, in observation, near normal SSTs prevailed over NINO3.4 and ISMR excess was due to variation of convection over equatorial Indian Ocean, which CFSv2 fails to capture with all ICs. CFSv2 reforecasts with late-April/early-May ICs are found to have highest deterministic ISMR forecast skill, if 1983 is excluded and Indian monsoon seasonal biases are also reduced. During the transitional ENSO in Boreal summer of 1983, faster and intense cooling of NINO3.4 SSTs in L3, could be due to larger dynamical drift with longer lead time of forecasting, compared to L0. Boreal summer ENSO forecast skill is also found to be lowest for L3 which gradually decreases from June to September. Rainfall occurrence with strong cold bias over NINO3.4, is because of the existence of stronger ocean-atmosphere coupling in CFSv2, but with a shift of the SST-rainfall relationship pattern to slightly colder SSTs than the observed. Our analysis suggests the need for a systematic approach to minimize bias in SST boundary forcing in CFSv2, to achieve improved ISMR forecasts.</p>


2021 ◽  
Author(s):  
Ingo Richter ◽  
Yu Kosaka ◽  
Hiroki Tokinaga ◽  
Shoichiro Kido

<p>The potential influence of the tropical Atlantic on the development of ENSO has received increased attention over recent years. In particular equatorial Atlantic variability (also known as the Atlantic zonal mode or AZM) has been shown to be anticorrelated with ENSO, i.e. cold AZM events in boreal summer (JJA) tend to be followed by El Niño in winter (DJF), and vice versa for warm AZM events. One problem with disentangling the two-way interaction between the equatorial Atlantic and Pacific is that both ENSO and the AZM tend to develop in boreal spring (MAM).</p><p>Here we use a set of GCM sensitivity experiments to quantify the strength of the Atlantic-Pacific link. The starting point is a 1000-year free-running control simulation with the GFDL CM 2.1 model. From this control simulation, we pick years in which a cold AZM event in JJA is followed by an El Niño in DJF. These years serve as initial conditions for “perfect model” prediction experiments with 10 ensemble members each. In the control experiments, the predictions evolve freely for 12 months from January 1 of each selected year. In the second set of predictions, SSTs are gradually relaxed to climatology in the tropical Atlantic, so that the cold AZM event is suppressed. In the third set of predictions, we restore the tropical Pacific SSTs to climatology, so that the El Niño event is suppressed.</p><p>The results suggest that, on average, the tropical Atlantic SST anomalies increase the strength of El Niño in the following winter by about 10-20%. If, on the other hand, El Niño development is suppressed, the amplitude of the cold AZM event also reduces by a similar amount. The results suggest that, in the context of this GCM, the influence of AZM events on ENSO development is relatively weak but not negligible. The fact that ENSO also influences the AZM in boreal spring highlights the complex two-way interaction between these two modes of variability.</p>


2021 ◽  
Author(s):  
Yinghan Sang ◽  
Hong-Li Ren ◽  
Yi Deng ◽  
Xiaofeng Xu ◽  
Xueli Shi ◽  
...  

Abstract This paper reports findings from a diagnostic and modeling analysis that investigates the impact of the late-spring soil moisture anomaly over North Eurasia on the boreal summer rainfall over northern East Asia (NEA). Soil moisture in May in the region from the Kara-Laptev Sea coasts to Central Siberian Plateau is found to be negatively correlated with the summer rainfall from Mongolia to Northeast China. The atmospheric circulation anomalies associated with the anomalously dry soil are characterized by a pressure dipole with the high-pressure center located over North Eurasia and the low-pressure center over NEA, where an anomalous lower-level moisture convergence occurs, favoring rainfall formation. Diagnoses and Modeling experiments demonstrate that the effect of the spring low soil moisture over North Eurasia may persist into the following summer through modulating local surface latent and sensible heat fluxes, increasing low-level air temperature at higher latitudes, and effectively reducing the meridional temperature gradient. The weakened temperature gradient could induce the decreased zonal wind and the generation of a low-pressure center over NEA, associated with a favorable condition of local synoptic activity. The above relationships and mechanisms are vice versa for the prior wetter soil and decreased NEA rainfall. These findings suggest that soil moisture anomalies over North Eurasia may act as a new precursor providing an additional predictability source for better predicting the summer rainfall in NEA.


2016 ◽  
Vol 29 (20) ◽  
pp. 7345-7364 ◽  
Author(s):  
Randal D. Koster ◽  
Yehui Chang ◽  
Hailan Wang ◽  
Siegfried D. Schubert

Abstract A series of stationary wave model (SWM) experiments are performed in which the boreal summer atmosphere is forced, over a number of locations in the continental United States, with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-hPa eddy streamfunction) is largely the same: a high anomaly forms over west-central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, similar results are found; imposing soil moisture dryness in the AGCM in different locations within the U.S. interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi River valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the U.S.–Canadian border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior.


2021 ◽  
pp. 1-34
Author(s):  
Douglas E. Miller ◽  
Zhuo Wang ◽  
Bo Li ◽  
Daniel S. Harnos ◽  
Trent Ford

AbstractSkillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is developed to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during boreal summer in the United States (US). We use a leading principal component of US soil moisture and an index based on the North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP’s Climate Forecast System version 2 (CFSv2) at weeks 3-4 in the eastern US. It is found that the North Pacific SST anomalies persist several weeks and are associated with a persistent wave train pattern (WTZ500), which leads to increased occurrences of blocking and extreme temperature over the eastern US. Extreme dry soil moisture conditions persist into week 4 and are associated with an increase in sensible heat flux and decrease in latent heat flux, which may help maintain the overlying anticyclone. The clear sky conditions associated with blocking anticyclones further decrease soil moisture conditions and increase the frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop planning, reservoir operation, and provide mitigation of impacts from extreme heat events.


2019 ◽  
Vol 32 (4) ◽  
pp. 1081-1099 ◽  
Author(s):  
Hailan Wang ◽  
Siegfried D. Schubert ◽  
Randal D. Koster ◽  
Yehui Chang

Past modeling simulations, supported by observational composites, indicate that during boreal summer, dry soil moisture anomalies in very different locations within the U.S. continental interior tend to induce the same upper-tropospheric circulation pattern: a high anomaly forms over west-central North America and a low anomaly forms to the east. The present study investigates the causes of this apparent phase locking of the upper-level circulation response and extends the investigation to other land regions in the Northern Hemisphere. The phase locking over North America is found to be induced by zonal asymmetries in the local basic state originating from North American orography. Specifically, orography-induced zonal variations of air temperature, those in the lower troposphere in particular, and surface pressure play a dominant role in placing the soil moisture–forced negative Rossby wave source (dominated by upper-level divergence anomalies) over the eastern leeside of the Western Cordillera, which subsequently produces an upper-level high anomaly over west-central North America, with the downstream anomalous circulation responses phase locked by continuity. The zonal variations of the local climatological atmospheric circulation, manifested as a climatological high over central North America, help shape the spatial pattern of the upper-level circulation responses. Considering the rest of the Northern Hemisphere, the northern Middle East exhibits similar phase locking, also induced by local orography. The Middle Eastern phase locking, however, is not as pronounced as that over North America; North America is where soil moisture anomalies have the greatest impact on the upper-tropospheric circulation.


2020 ◽  
Vol 142 (1-2) ◽  
pp. 393-406
Author(s):  
Zhongkai Bo ◽  
Xiangwen Liu ◽  
Weizong Gu ◽  
Anning Huang ◽  
Yongjie Fang ◽  
...  

Abstract In this paper, we evaluate the capability of the Beijing Climate Center Climate System Model (BCC-CSM) in simulating and forecasting the boreal summer intraseasonal oscillation (BSISO), using its simulation and sub-seasonal to seasonal (S2S) hindcast results. Results show that the model can generally simulate the spatial structure of the BSISO, but give relatively weaker strength, shorter period, and faster transition of BSISO phases when compared with the observations. This partially limits the model’s capability in forecasting the BSISO, with a useful skill of only 9 days. Two sets of hindcast experiments with improved atmospheric and atmosphere/ocean initial conditions (referred to as EXP1 and EXP2, respectively) are conducted to improve the BSISO forecast. The BSISO forecast skill is increased by 2 days with the optimization of atmospheric initial conditions only (EXP1), and is further increased by 1 day with the optimization of both atmospheric and oceanic initial conditions (EXP2). These changes lead to a final skill of 12 days, which is comparable to the skills of most models participated in the S2S Prediction Project. In EXP1 and EXP2, the BSISO forecast skills are improved for most initial phases, especially phases 1 and 2, denoting a better description for BSISO propagation from the tropical Indian Ocean to the western North Pacific. However, the skill is considerably low and insensitive to initial conditions for initial phase 6 and target phase 3, corresponding to the BSISO convection’s active-to-break transition over the western North Pacific and BSISO convection’s break-to-active transition over the tropical Indian Ocean and Maritime Continent. This prediction barrier also exists in many forecast models of the S2S Prediction Project. Our hindcast experiments with different initial conditions indicate that the remarkable model errors over the Maritime Continent and subtropical western North Pacific may largely account for the prediction barrier.


Sign in / Sign up

Export Citation Format

Share Document