Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: case studies using the WRF model

2013 ◽  
Vol 42 (11-12) ◽  
pp. 2885-2898 ◽  
Author(s):  
Ziqian Wang ◽  
Anmin Duan ◽  
Guoxiong Wu
2013 ◽  
Vol 26 (1) ◽  
pp. 261-275 ◽  
Author(s):  
Anmin Duan ◽  
Meirong Wang ◽  
Yonghui Lei ◽  
Yangfan Cui

Abstract The impacts of the thermal forcing over the Tibetan Plateau (TP) in spring on changes in summer rainfall in China are investigated using historical records from the period between 1980 and 2008. The spring sensible heat (SH) flux and snow depth over the TP both decreased over this time period, although the trend in SH was more significant than that in snow depth. The similarity between patterns of precipitation trends over China and corresponding patterns of regression coefficients on the leading mode of spring SH change over the TP demonstrates the distinct contribution of changes in TP SH during spring. Enhanced precipitation in southern China was accompanied by increases in heavy rainfall, precipitation intensity, and the frequency of precipitation events, while reduced precipitation in northern China and northeastern China was primarily associated with decreases in the frequency of precipitation events. Further analysis using observational data and numerical simulations reveals that the reductions in SH over the TP have weakened the monsoon circulation and postponed the seasonal reversal of the land–sea thermal contrast in East Asia. In addition, the positive spring SH anomaly may generate a stronger summer atmospheric heat source over the TP due to the positive feedback between diabatic heating and local circulation.


2018 ◽  
Vol 31 (16) ◽  
pp. 6433-6444 ◽  
Author(s):  
Ziqian Wang ◽  
Song Yang ◽  
Ngar-Cheung Lau ◽  
Anmin Duan

Although the impact of the North Atlantic Oscillation (NAO), especially the antecedent NAO in winter and spring, on East Asian summer climate has been studied extensively, the possible connection from the summer NAO (SNAO) and then the Tibetan Plateau (TP) to East China summer rainfall remains unclear. This study reveals that on interannual time scales the SNAO is significantly correlated with the variations of East China summer rainfall and the thermal forcing of the TP provides an intermediate bridge effect in this Eurasian teleconnection. The SNAO primarily regulates the rainfall variability over the TP through large-scale wave trains and the TP rainfall anomalies in turn lead to a change in local diabatic heating, which excites Rossby waves to the downstream regions. To the northeast of the TP, an anomalous barotropic cyclone is formed in the nearly entire troposphere, generating low-level northerly flow anomalies over northern China. Meanwhile, the TP heating also induces low-level southerly flow anomalies over southern China. The anomalous northerly and southerly winds converge in the lower troposphere, enhancing the summer rainfall over central East China. Compared to the SNAO, the TP thermal forcing exerts a more direct impact on the variations of East China summer rainfall in the Eurasian teleconnection discussed.


2009 ◽  
Vol 48 (12) ◽  
pp. 2474-2486 ◽  
Author(s):  
Kun Yang ◽  
Jun Qin ◽  
Xiaofeng Guo ◽  
Degang Zhou ◽  
Yaoming Ma

Abstract To clarify the thermal forcing of the Tibetan Plateau, long-term coarse-temporal-resolution data from the China Meteorological Administration have been widely used to estimate surface sensible heat flux by bulk methods in many previous studies; however, these estimates have seldom been evaluated against observations. This study at first evaluates three widely used bulk schemes against Tibet instrumental flux data. The evaluation shows that large uncertainties exist in the heat flux estimated by these schemes; in particular, upward heat fluxes in winter may be significantly underestimated, because diurnal variations of atmospheric stability were not taken into account. To improve the estimate, a new method is developed to disaggregate coarse-resolution meteorological data to hourly according to statistical relationships derived from high-resolution experimental data, and then sensible heat flux is estimated from the hourly data by a well-validated flux scheme. Evaluations against heat flux observations in summer and against net radiation observations in winter indicate that the new method performs much better than previous schemes, and therefore it provides a robust basis for quantifying the Tibetan surface energy budget.


2018 ◽  
Vol 52 (7-8) ◽  
pp. 3997-4009 ◽  
Author(s):  
Lihua Zhu ◽  
Gang Huang ◽  
Guangzhou Fan ◽  
Xia Qü ◽  
Zhibiao Wang ◽  
...  

2020 ◽  
Vol 21 (11) ◽  
pp. 2523-2536
Author(s):  
Lingjing Zhu ◽  
Jiming Jin ◽  
Yimin Liu

AbstractIn this study, we investigated the effects of lakes in the Tibetan Plateau (TP) on diurnal variations of local climate and their seasonal changes by using the Weather Research and Forecasting (WRF) Model coupled with a one-dimensional physically based lake model. We conducted WRF simulations for the TP over 2000–10, and the model showed excellent performance in simulating near-surface air temperature, precipitation, lake surface temperature, and lake-region precipitation when compared to observations. We carried out additional WRF simulations where all the TP lakes were replaced with the nearest land-use types. The differences between these two sets of simulations were analyzed to quantify the effects of the TP lakes on the local climate. Our results indicate that the strongest lake-induced cooling occurred during the spring daytime, while the most significant warming occurred during the fall nighttime. The cooling and warming effects of the lakes further inhibited precipitation during summer afternoons and evenings and motivated it during fall early mornings, respectively. This study lays a solid foundation for further exploration of the role of TP lakes in climate systems at different time scales.


2021 ◽  
Vol 7 (24) ◽  
pp. eabf9395
Author(s):  
Shuai Hu ◽  
Tianjun Zhou

Skillful near-term climate predictions of rainfall over the Tibetan Plateau (TP), the Asian water tower, benefit billions of people. On the basis of the state-of-the-art decadal prediction models, we showed evidence that although the raw model outputs show low predicted ability for the summer Inner TP (ITP) rainfall due to low signal-to-noise ratios in models, we can produce realistic predictions by extracting the predictable signal from large ensemble predictions along with a postprocessing procedure of variance adjustment. The results indicate that the summer ITP rainfall is highly predictable on multiyear time scales. The predictability of ITP rainfall originates from the Silk Road pattern driven by sea surface temperature over the subpolar gyre region in North Atlantic. Real-time forecasts suggest that the ITP will become wetter, with 12.8% increase in rainfall during 2020–2027 relative to 1986–2005. Our results will help the water resources management in the surrounding regions.


Sign in / Sign up

Export Citation Format

Share Document