Teleconnection between Summer NAO and East China Rainfall Variations: A Bridge Effect of the Tibetan Plateau

2018 ◽  
Vol 31 (16) ◽  
pp. 6433-6444 ◽  
Author(s):  
Ziqian Wang ◽  
Song Yang ◽  
Ngar-Cheung Lau ◽  
Anmin Duan

Although the impact of the North Atlantic Oscillation (NAO), especially the antecedent NAO in winter and spring, on East Asian summer climate has been studied extensively, the possible connection from the summer NAO (SNAO) and then the Tibetan Plateau (TP) to East China summer rainfall remains unclear. This study reveals that on interannual time scales the SNAO is significantly correlated with the variations of East China summer rainfall and the thermal forcing of the TP provides an intermediate bridge effect in this Eurasian teleconnection. The SNAO primarily regulates the rainfall variability over the TP through large-scale wave trains and the TP rainfall anomalies in turn lead to a change in local diabatic heating, which excites Rossby waves to the downstream regions. To the northeast of the TP, an anomalous barotropic cyclone is formed in the nearly entire troposphere, generating low-level northerly flow anomalies over northern China. Meanwhile, the TP heating also induces low-level southerly flow anomalies over southern China. The anomalous northerly and southerly winds converge in the lower troposphere, enhancing the summer rainfall over central East China. Compared to the SNAO, the TP thermal forcing exerts a more direct impact on the variations of East China summer rainfall in the Eurasian teleconnection discussed.

2021 ◽  
pp. 1-40
Author(s):  
Qingzhe Zhu ◽  
Yuzhi Liu ◽  
Tianbin Shao ◽  
Run Luo ◽  
Ziyuan Tan

AbstractThe Tibetan Plateau (TP), the “Water Tower of Asia”, plays an important role in the water cycle. However, few studies have linked the TP’s water vapor supply with the climate over North China. In this study, we found that changes in the subtropical westerly jet (SWJ) dynamically induce drought in North China, and the TP plays an important role in this relationship. During July-August for the period of 1981-2019, the SWJ center between 75°E and 105°E obviously shifted northward at a rate of 0.04° per year. Correspondingly, the zonal winds in the southern subtropics were incredibly weakened, causing the outflow of water vapor from the TP to decrease dramatically. Combined with numerical simulations, we discovered that a reduction in water vapor transport from the TP can obviously decrease the precipitation over North China. Sensitivity experiments demonstrated that if the water vapor outflow from the eastern border of the TP decreases by 52.74%, the precipitation in North China will decrease by 12.69% due to a decrease in the local cloud fraction caused by a diminished water vapor content in the atmosphere. Therefore, although less water vapor transport occurs in the upper troposphere than in the lower troposphere, the impact of transport from the TP in the former on the downstream precipitation cannot be ignored.


2016 ◽  
Vol 16 (3) ◽  
pp. 1365-1375 ◽  
Author(s):  
X. Xu ◽  
T. Zhao ◽  
F. Liu ◽  
S. L. Gong ◽  
D. Kristovich ◽  
...  

Abstract. Rapid increases in pollutant emissions in conjunction with stagnant meteorological conditions result in haze pollution in China. Recent frequent haze in China has attracted worldwide attention. Here we show a relationship between the haze events and Tibetan Plateau (TP)'s environment and climate changes. Based on observational data taken over recent decades, we identify central-eastern China (CEC) as a climatological large-scale “susceptible region” of frequent haze, which is harbored by the TP with its impact on midlatitude westerly winds. The observational and modeling studies demonstrate that the interannual variations in the thermal forcing of TP are positively correlated with the incidences of wintertime haze over CEC. Further analysis indicates that the climate warming of the TP induced changes in atmospheric circulation, driving frequent haze events in CEC. The frequent haze occurrences in CEC are consistent with decreasing winter monsoon winds, intensifying downward air flows and increasing atmospheric stability in the lower troposphere over the CEC in association with upstream plateau's thermal anomalies. Therefore, variations of haze in China are related to mechanical and thermal forcing by the TP. Our results also suggest that implications of the large TP topography for environment and climate changes should be taken into account for air pollution mitigation policies in China.


2010 ◽  
Vol 10 (10) ◽  
pp. 4673-4688 ◽  
Author(s):  
J. Kuhlmann ◽  
J. Quaas

Abstract. The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during pre-monsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and the Arabian Sea. CALIPSO lidar satellite data, providing vertically resolved images of aerosols, shows aerosol concentrations to be highest in the lower 5 km of the atmosphere with only little amounts reaching the Tibetan Plateau altitude. Using a radiative transfer model we find that aerosol plumes reduce shortwave radiation throughout the Monsoon region in the seasonal average by between 20 and 30 W/m2. Peak shortwave heating in the lower troposphere reaches 0.2 K/day. In higher layers this shortwave heating is partly balanced by longwave cooling. Although high-albedo surfaces, such as deserts or the Tibetan Plateau, increase the shortwave heating by around 10%, the overall effect is strongest close to the aerosol sources. A strong elevated heating which could influence large-scale monsoonal circulations as suggested by previous studies is not found.


2010 ◽  
Vol 10 (2) ◽  
pp. 4887-4926 ◽  
Author(s):  
J. Kuhlmann ◽  
J. Quaas

Abstract. The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during pre-monsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and the Arabian Sea. CALIPSO lidar satellite data, providing vertically resolved images of aerosols, shows aerosol concentrations to be highest in the lower 5 km of the atmosphere with only little amounts reaching the Tibetan Plateau altitude. Using a radiative transfer model we find that aerosol plumes reduce shortwave radiation throughout the Monsoon region in the seasonal average by between 20 and 30 W/m2. Peak shortwave heating in the lower troposphere reaches 0.2 K/day. In higher layers this shortwave heating is partly balanced by longwave cooling. Although high-albedo surfaces, such as deserts or the Tibetan Plateau, increase the shortwave heating by around 10%, the overall effect is strongest close to the aerosol sources. A strong elevated heating which could influence large-scale monsoonal circulations as suggested by previous studies is not found.


2015 ◽  
Vol 15 (20) ◽  
pp. 28915-28937 ◽  
Author(s):  
X. Xu ◽  
T. Zhao ◽  
F. Liu ◽  
S. L. Gong ◽  
D. Kristovich ◽  
...  

Abstract. Rapid increases in pollutant emissions in conjunction with stagnant meteorological conditions result in haze pollution in China. Recent frequent haze in China has attracted worldwide attention. Here we show a relationship between the haze events and Tibetan Plateau (TP)'s environment and climate changes. Based on observational data taken over recent decades, we identify central-eastern China (CEC) as a climatological large-scale "susceptible region" of frequent haze, which is harbored by the TP with its impact on mid-latitude westerly winds. The observational and modeling studies demonstrate that the interannual variations in the thermal forcing of TP are positively correlated with the incidences of wintertime haze over CEC. Further analysis indicates that the TP-climate warming induced changes in atmospheric circulation driving frequent haze events in CEC. The frequent haze occurrences in CEC are consistent with decreasing winter monsoon winds, intensifying downward air flows and increasing atmospheric stability in the lower troposphere over the CEC in association with upstream plateau's thermal anomalies. Therefore, variations of haze in China are related to mechanical and thermal forcing by the TP. Our results also suggest that implications of the large TP-topography for environment and climate changes should be taken into account for air pollution mitigation policies in China.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yan Song ◽  
Zhicai Li ◽  
Yu Gu ◽  
Ziniu Xiao

Solar activity is one of the main external forcing factors driving the Earth’s climate system to change. The snow cover over the Tibetan Plateau is an important physical factor affecting the East Asian climate. At present, insufficient research on the connection between solar activity and snow cover over the Tibetan Plateau has been carried out. Using Solar Radio Flux (SRF), Solar Sunspot Number (SSN), and Total Solar Irradiance (TSI) data, this paper calculated the correlation coefficients with snow indices over the Tibetan Plateau, such as winter and spring snow depth (WSD/SSD) and snow day number (WSDN/SSDN). These snow indices are obtained from the daily gauge snow data in the Tibetan Plateau. Through correlation analyses, it is found that there are significant synchronous or lag correlations between snow indices and solar parameters on multi-time scales. In particular, the Spring Snow Day Number (SSDN) is of significant synchronous or lag correlation with SRF, SSN, and TSI on multi-time scales. It is further found that SSDN over the Tibetan Plateau has more stable positive correlations with SRF by using the 21-year running mean and cross spectrum analyses. Therefore, SSDN can be ascertained to be the most sensitive snow index to the solar activity compared with other snow indices. Moreover, its influence on summer precipitation of China is strongly regulated by solar activity. In high solar activity years (HSAY), the significant correlated area of summer precipitation in China to SSDN is located further north than that in low solar activity years (LSAY). Such impact by solar activity is also remarkable after excluding the impact of ENSO (i.e., El Niño–Southern Oscillation) events. These results provide support for the application of snow indices in summer rainfall prediction in China.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 307
Author(s):  
Chi Zhang ◽  
Naixia Mou ◽  
Jiqiang Niu ◽  
Lingxian Zhang ◽  
Feng Liu

Changes in snow cover over the Tibetan Plateau (TP) have a significant impact on agriculture, hydrology, and ecological environment of surrounding areas. This study investigates the spatio-temporal pattern of snow depth (SD) and snow cover days (SCD), as well as the impact of temperature and precipitation on snow cover over TP from 1979 to 2018 by using the ERA5 reanalysis dataset, and uses the Mann–Kendall test for significance. The results indicate that (1) the average annual SD and SCD in the southern and western edge areas of TP are relatively high, reaching 10 cm and 120 d or more, respectively. (2) In the past 40 years, SD (s = 0.04 cm decade−1, p = 0.81) and SCD (s = −2.3 d decade−1, p = 0.10) over TP did not change significantly. (3) The positive feedback effect of precipitation is the main factor affecting SD, while the negative feedback effect of temperature is the main factor affecting SCD. This study improves the understanding of snow cover change and is conducive to the further study of climate change on TP.


2018 ◽  
Vol 18 (10) ◽  
pp. 7329-7343 ◽  
Author(s):  
Jiming Li ◽  
Qiaoyi Lv ◽  
Bida Jian ◽  
Min Zhang ◽  
Chuanfeng Zhao ◽  
...  

Abstract. Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.


Sign in / Sign up

Export Citation Format

Share Document