Does the modification in “critical relative humidity” of NCEP CFSv2 dictate Indian mean summer monsoon forecast? Evaluation through thermodynamical and dynamical aspects

2015 ◽  
Vol 46 (3-4) ◽  
pp. 1197-1222 ◽  
Author(s):  
S. De ◽  
Anupam Hazra ◽  
Hemantkumar S. Chaudhari
2012 ◽  
Vol 479-481 ◽  
pp. 2275-2278
Author(s):  
Ming Jin Yang ◽  
Wu Ming Xu ◽  
Tian Tang ◽  
Ling Yang ◽  
Feng Liu

The hygroscopicity property of the rapeseed at different temperature and humidity was experimental studied in this paper. Tested results show that: the moisture absorption rates increase with the increase of relative humidity at the early period of absorption, and higher temperature leads to earlier reach of moisture equilibrium; the critical relative humidity(CRH) increases with the increase of temperature; the optional relative humidity for safety storage of rapeseed should be controlled less than 60%.


2009 ◽  
Vol 57 (9) ◽  
pp. 943-947 ◽  
Author(s):  
Yingli Wang ◽  
Xiancheng Zhan ◽  
Chaoqun Xiang ◽  
Jia Chen ◽  
Lan Cao ◽  
...  

1964 ◽  
Vol 4 (13) ◽  
pp. 178 ◽  
Author(s):  
BG Collins

Conditions favouring sporulation of blue mould (Peronospora tabacina Adam) having been established in the laboratory, a theoretical model has now been used to express the critical parameter, i.e. the relative humidity near the leaf surface where the spores form, in terms of the ambient atmospheric conditions. To test the validity of this model, wind speed, air temperature, and relative humidity mere measured over four growing seasons in three tobacco crops in the Ovens Valley, Victoria, and related to times of sporulation of the mould observed concurrently in these crops. 'Critical relative humidity,' a function of wind speed, air temperature, and heat loss from the crop is shown to be a more serviceable indicator of likelihood of sporulation than either ambient relative humidity or rainfall.


2012 ◽  
Vol 25 (8) ◽  
pp. 2914-2930 ◽  
Author(s):  
Wataru Yanase ◽  
Masaki Satoh ◽  
Hiroshi Taniguchi ◽  
Hatsuki Fujinami

Abstract The environmental field of tropical cyclogenesis over the Bay of Bengal is analyzed for the extended summer monsoon season (approximately May–November) using best-track and reanalysis data. Genesis potential index (GPI) is used to assess four possible environmental factors responsible for tropical cyclogenesis: lower-tropospheric absolute vorticity, vertical shear, potential intensity, and midtropospheric relative humidity. The climatological cyclogenesis is active within high GPI in the premonsoon (~May) and postmonsoon seasons (approximately October–November), which is attributed to weak vertical shear. The genesis of intense tropical cyclone is suppressed within the low GPI in the mature monsoon (approximately June–September), which is due to the strong vertical shear. In addition to the climatological seasonal transition, the authors’ composite analysis based on tropical cyclogenesis identified a high GPI signal moving northward with a periodicity of approximately 30–40 days, which is associated with boreal summer intraseasonal oscillation (BSISO). In a composite analysis based on the BSISO phase, the active cyclogenesis occurs in the high GPI phase of BSISO. It is revealed that the high GPI of BSISO is attributed to high relative humidity and large absolute vorticity. Furthermore, in the mature monsoon season, when the vertical shear is climatologically strong, tropical cyclogenesis particularly favors the phase of BSISO that reduces vertical shear effectively. Thus, the combination of seasonal and intraseasonal effects is important for the tropical cyclogenesis, rather than the independent effects.


Langmuir ◽  
2008 ◽  
Vol 24 (17) ◽  
pp. 9189-9193 ◽  
Author(s):  
Kar Tean Tan ◽  
Bryan D. Vogt ◽  
Christopher C. White ◽  
Kristen L. Steffens ◽  
Joshua Goldman ◽  
...  

2019 ◽  
Vol 124 (17-18) ◽  
pp. 9824-9838 ◽  
Author(s):  
Yu Liu ◽  
Lu Wang ◽  
Qiang Li ◽  
Qiufang Cai ◽  
Huiming Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document