scholarly journals The influence of boreal winter extratropical North Pacific Oscillation on Australian spring rainfall

2015 ◽  
Vol 47 (3-4) ◽  
pp. 1181-1196 ◽  
Author(s):  
Linye Song ◽  
Yun Li ◽  
Wansuo Duan
2021 ◽  
Author(s):  
Ruiqiang Ding ◽  
YU-HENG TSENG ◽  
Emanuele Di Lorenzo ◽  
Liang Shi ◽  
Jianping Li ◽  
...  

Abstract Multi-year El Niño events induce severe and persistent floods and droughts worldwide, with significant socioeconomic impacts, but the causes of their long-lasting behaviors are still not fully understood. Here we present a two-way feedback mechanism between the tropics and extratropics to argue that extratropical atmospheric variability associated with the North Pacific Oscillation (NPO) is a key source of multi-year El Niño events. The NPO during boreal winter can trigger a Central Pacific (CP) El Niño during the subsequent winter, which excites atmospheric teleconnections to the extratropics that project onto the NPO variability, then re-triggers another El Niño event in the following winter, finally resulting in persistent El Niño-like states. Model experiments, with the NPO forcing assimilated to constrain atmospheric circulation, replicate the observed connection between NPO forcing and the occurrence of multi-year El Niño events. Future projections of Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6) models demonstrate that if the projected NPO variability becomes enhanced under future anthropogenic forcing, then more frequent multi-year El Niño events should be expected. We conclude that properly accounting for the effects of the NPO on the evolution of El Niño events may improve multi-year El Niño prediction and projection.


2019 ◽  
Vol 19 (14) ◽  
pp. 9081-9095 ◽  
Author(s):  
Laura J. Wilcox ◽  
Nick Dunstone ◽  
Anna Lewinschal ◽  
Massimo Bollasina ◽  
Annica M. L. Ekman ◽  
...  

Abstract. Asian emissions of anthropogenic aerosols and their precursors have increased rapidly since 1980, with half of the increase since the pre-industrial era occurring in this period. Transient experiments with the HadGEM3-GC2 coupled model were designed to isolate the impact of Asian anthropogenic aerosols on global climate in boreal winter. It is found that this increase has resulted in local circulation changes, which in turn have driven decreases in precipitation over China, alongside an intensification of the offshore monsoon flow. No large temperature changes are seen over China. Over India, the opposite response is found, with decreasing temperatures and increasing precipitation. The dominant feature of the local circulation changes is an increase in low-level convergence, ascent, and precipitation over the Maritime Continent, which forms part of a tropical Pacific-wide La Niña-like response. HadGEM3-GC2 also simulates pronounced far-field responses. A decreased meridional temperature gradient in the North Pacific leads to a positive Pacific–North American circulation pattern, with associated temperature anomalies over the North Pacific and North America. Anomalous northeasterly flow over northeast Europe drives advection of cold air into central and western Europe, causing cooling in this region. An anomalous anticyclonic circulation over the North Atlantic causes drying over western Europe. Using a steady-state primitive equation model, LUMA, we demonstrate that these far-field midlatitude responses arise primarily as a result of Rossby waves generated over China, rather than in the equatorial Pacific.


2019 ◽  
Vol 53 (1-2) ◽  
pp. 671-686
Author(s):  
Minghong Zhang ◽  
William Perrie ◽  
Zhenxia Long

2010 ◽  
Vol 67 (11) ◽  
pp. 3706-3720 ◽  
Author(s):  
Hyo-Seok Park ◽  
John C. H. Chiang ◽  
Seok-Woo Son

Abstract The role of the central Asian mountains on North Pacific storminess is examined using an atmospheric general circulation model by varying the height and the areas of the mountains. A series of model integrations show that the presence of the central Asian mountains suppresses the North Pacific storminess by 20%–30% during boreal winter. Their impact on storminess is found to be small during other seasons. The mountains amplify stationary waves and effectively weaken the high-frequency transient eddy kinetic energy in boreal winter. Two main causes of the reduced storminess are diagnosed. First, the decrease in storminess appears to be associated with a weakening of downstream eddy development. The mountains disorganize the zonal coherency of wave packets and refract them more equatorward. As the zonal traveling distance of wave packets gets substantially shorter, downstream eddy development gets weaker. Second, the central Asian mountains suppress the global baroclinic energy conversion. The decreased baroclinic energy conversion, particularly over the eastern Eurasian continent, decreases the number of eddy disturbances entering into the western North Pacific. The “barotropic governor” does not appear to explain the reduced storminess in our model simulations.


2015 ◽  
Vol 28 (20) ◽  
pp. 8109-8117 ◽  
Author(s):  
Stephen Baxter ◽  
Sumant Nigam

Abstract The 2013/14 boreal winter (December 2013–February 2014) brought extended periods of anomalously cold weather to central and eastern North America. The authors show that a leading pattern of extratropical variability, whose sea level pressure footprint is the North Pacific Oscillation (NPO) and circulation footprint the West Pacific (WP) teleconnection—together, the NPO–WP—exhibited extreme and persistent amplitude in this winter. Reconstruction of the 850-hPa temperature, 200-hPa geopotential height, and precipitation reveals that the NPO–WP was the leading contributor to the winter climate anomaly over large swaths of North America. This analysis, furthermore, indicates that NPO–WP variability explains the most variance of monthly winter temperature over central-eastern North America since, at least, 1979. Analysis of the NPO–WP related thermal advection provides physical insight on the generation of the cold temperature anomalies over North America. Although NPO–WP’s origin and development remain to be elucidated, its concurrent links to tropical SSTs are tenuous. These findings suggest that notable winter climate anomalies in the Pacific–North American sector need not originate, directly, from the tropics. More broadly, the attribution of the severe 2013/14 winter to the flexing of an extratropical variability pattern is cautionary given the propensity to implicate the tropics, following several decades of focus on El Niño–Southern Oscillation and its regional and far-field impacts.


Sign in / Sign up

Export Citation Format

Share Document