Interdecadal change in the relationship between boreal winter North Pacific Oscillation and Eastern Australian rainfall in the following autumn

2021 ◽  
Author(s):  
Linye Song ◽  
Shangfeng Chen ◽  
Wen Chen ◽  
Wansuo Duan ◽  
Yun Li
2021 ◽  
pp. 1-57
Author(s):  
Minghao Yang ◽  
Chongyin Li ◽  
Xin Li ◽  
Yanke Tan ◽  
Xiong Chen ◽  
...  

AbstractBased on the daily NCEP reanalysis, the present study investigates the interdecadal change in the relationship between the winter North Pacific storm track (WNPST) and the East Asian winter monsoon (EAWM), and evaluates the WNPST-EAWM relationship in 17 CMIP6 models. The results show that the out-of-phase WNPST-EAWM relationship underwent an interdecadal change in the mid-1980s. The WNPST-EAWM relationship became less significant during P2 (1990-2015). The atmospheric circulation anomaly related to the EAWM during P1 (1955-1980) is more robust than that during P2. The interdecadal weakening WNPST-EAWM relationship may be attributed to the interdecadal damping WNPST-EAWM interaction. The EAWM-related anomalous baroclinic energy conversion and moisture effect, including meridional and vertical eddy moisture fluxes, contribute to the significant attenuation of the WNPST during P1. The transient eddy-induced dynamic forcing and thermal forcing anomalies, as well as the barotropic process represented by the local Eliassen-Palm flux divergence associated with WNPST, can also significantly manipulate the upper-tropospheric jet during P1. However, the atmospheric circulation and interaction between the WNPST and EAWM during P2 are not as significant as those during P1. The effect of ENSO on the WNPST is significantly different before and after the mid-1980s. After the mid-1980s, the WNPST shows the characteristic of moving equatorward during El Niño events. It seems that ENSO takes over the WNPST from the EAWM after the mid-1980s. In addition, except for BCC-ESM1, CanESM5 and SAM0-UNICON, most of the CMIP6 models cannot reproduce the significant out-of-phase WNPST-EAWM relationship.


2021 ◽  
Author(s):  
Ruiqiang Ding ◽  
YU-HENG TSENG ◽  
Emanuele Di Lorenzo ◽  
Liang Shi ◽  
Jianping Li ◽  
...  

Abstract Multi-year El Niño events induce severe and persistent floods and droughts worldwide, with significant socioeconomic impacts, but the causes of their long-lasting behaviors are still not fully understood. Here we present a two-way feedback mechanism between the tropics and extratropics to argue that extratropical atmospheric variability associated with the North Pacific Oscillation (NPO) is a key source of multi-year El Niño events. The NPO during boreal winter can trigger a Central Pacific (CP) El Niño during the subsequent winter, which excites atmospheric teleconnections to the extratropics that project onto the NPO variability, then re-triggers another El Niño event in the following winter, finally resulting in persistent El Niño-like states. Model experiments, with the NPO forcing assimilated to constrain atmospheric circulation, replicate the observed connection between NPO forcing and the occurrence of multi-year El Niño events. Future projections of Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6) models demonstrate that if the projected NPO variability becomes enhanced under future anthropogenic forcing, then more frequent multi-year El Niño events should be expected. We conclude that properly accounting for the effects of the NPO on the evolution of El Niño events may improve multi-year El Niño prediction and projection.


2015 ◽  
Vol 28 (4) ◽  
pp. 1527-1542 ◽  
Author(s):  
Shangfeng Chen ◽  
Wen Chen ◽  
Renguang Wu

Abstract Previous studies suggested that the boreal spring Arctic Oscillation (AO) exerts a pronounced influence on the following East Asian summer monsoon (EASM) variability. This study reveals that the relationship of spring AO with the following EASM experienced a significant interdecadal change in the early 1970s. The influence of spring AO on the following EASM is weak during the 1950s and 1960s but strong and significant during the mid-1970s through the mid-1990s. The spring AO-related sea surface temperature (SST), atmospheric circulation, and heating anomalies are compared between 1949–71 and 1975–97. Results show that the spring AO-related cyclonic circulation anomaly over the tropical western North Pacific is weaker and located more northward in the former epoch than in the latter epoch. Correspondingly, SST, atmospheric circulation, and heating anomalies over the tropical North Pacific are located more northeastward in the former than latter epoch from spring to summer. In the following summer, the spring AO-related cyclonic circulation anomalies over the tropical North Pacific are located farther away from East Asia in the former epoch. This interdecadal change in the AO–EASM connection may be attributed to a significant change in the intensity of spring North Pacific synoptic-scale eddy activity around the early 1970s from a weak regime to a strong regime, which induces a stronger eddy feedback to the low-frequency mean flow after the early 1970s. This may explain a stronger spring AO-related cyclonic circulation over the tropical western North Pacific and thus a closer relationship between the spring AO and the following EASM in the latter than former epoch.


Sign in / Sign up

Export Citation Format

Share Document