The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean

2016 ◽  
Vol 48 (5-6) ◽  
pp. 2065-2085 ◽  
Author(s):  
Liping Zhang ◽  
Thomas L. Delworth ◽  
Fanrong Zeng
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniele Castellana ◽  
Henk A. Dijkstra

AbstractBy studying transition probabilities of the Atlantic Meridional Overturning Circulation (AMOC) in an ensemble of CMIP5 climate models, we revisit one of the stability indicators of the AMOC, i.e. the freshwater transport carried by the AMOC at the southern boundary of the Atlantic basin. A correction to this indicator, based on the transition probabilities, is suggested to measure whether an AMOC state is in a multiple equilibrium regime or not. As a consequence, the AMOC of all CMIP5 models considered is in a multiple equilibrium regime and hence, in principle, a collapsed AMOC state should exist in each of these models. The results further demonstrate the dependence of the Atlantic surface freshwater flux on the AMOC and the impact of extreme events in the AMOC on temperatures in the North Atlantic region.


2011 ◽  
Vol 24 (7) ◽  
pp. 1965-1984 ◽  
Author(s):  
Olivier Arzel ◽  
Matthew H. England ◽  
Oleg A. Saenko

Abstract Recent results based on models using prescribed surface wind stress forcing have suggested that the net freshwater transport Σ by the Atlantic meridional overturning circulation (MOC) into the Atlantic basin is a good indicator of the multiple-equilibria regime. By means of a coupled climate model of intermediate complexity, this study shows that this scalar Σ cannot capture the connection between the properties of the steady state and the impact of the wind stress feedback on the evolution of perturbations. This implies that, when interpreting the observed value of Σ, the position of the present-day climate is systematically biased toward the multiple-equilibria regime. The results show, however, that the stabilizing influence of the wind stress feedback on the MOC is restricted to a narrow window of freshwater fluxes, located in the vicinity of the state characterized by a zero freshwater flux divergence over the Atlantic basin. If the position of the present-day climate is farther away from this state, then wind stress feedbacks are unable to exert a persistent effect on the modern MOC. This is because the stabilizing influence of the shallow reverse cell situated south of the equator during the off state rapidly dominates over the destabilizing influence of the wind stress feedback when the freshwater forcing gets stronger. Under glacial climate conditions by contrast, a weaker sensitivity with an opposite effect is found. This is ultimately due to the relatively large sea ice extent of the glacial climate, which implies that, during the off state, the horizontal redistribution of fresh waters by the subpolar gyre does not favor the development of a thermally direct MOC as opposed to the modern case.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Akira Oka ◽  
Ayako Abe-Ouchi ◽  
Sam Sherriff-Tadano ◽  
Yusuke Yokoyama ◽  
Kenji Kawamura ◽  
...  

AbstractAbrupt climate warming events, known as Dansgaard-Oeschger events, occurred frequently during glacial periods, and are thought to be linked to changes in the Atlantic meridional overturning circulation. However, the mechanism responsible is not fully understood. Here, we present numerical simulations with a sea-ice coupled ocean general circulation model that systematically investigate the thermal threshold where deep water formation, and hence the overturning circulation, shift abruptly when the sea surface cools or warms sufficiently. Specifically, in our simulations where the magnitude of the sea surface cooling is changed separately or simultaneously in the Northern and Southern Hemispheres, a prominent threshold is identified when the Southern Hemisphere is slightly warmer than during glacial maxima. Abrupt mode changes of the Atlantic Meridional Overturning Circulation, like those during Dansgaard-Oeschger events, occur past a threshold in a transient simulation where the Southern Hemisphere is gradually warmed. We propose that the Southern Ocean plays a role in controlling the thermal threshold of the Atlantic Meridional Overturning Circulation in a glacial climate and that Southern Ocean warming may have triggered Dansgaard-Oeschger events which occurred with long interval.


2020 ◽  
Vol 50 (9) ◽  
pp. 2561-2572
Author(s):  
Fabian Schloesser

AbstractNorth Atlantic meridional density gradients have been identified as a main driver of the Atlantic meridional overturning circulation (AMOC). Due to the cabbeling effect, these density gradients are increasingly dominated by temperature gradients in a warming ocean, and a direct link exists between North Atlantic mean temperature and AMOC strength. This paper quantifies the impact of this mechanism in the Stommel and Gnanadesikan models. Owing to different feedback mechanisms being included, a 1°C warming of North Atlantic mean ocean temperature strengthens the AMOC by 3% in the Gnanadesikan model and 8% in the Stommel model. In the Gnanadesikan model that increase is equivalent to a 4% strengthening of Southern Hemisphere winds and can compensate for a 14% increase in the hydrological cycle. Furthermore, mean temperature strongly controls a freshwater forcing threshold for the strong AMOC state, suggesting that the cabbeling effect needs to be considered to explain past and future AMOC variability.


2020 ◽  
Vol 33 (8) ◽  
pp. 3125-3149 ◽  
Author(s):  
Shantong Sun ◽  
Ian Eisenman ◽  
Laure Zanna ◽  
Andrew L. Stewart

AbstractPaleoclimate proxy evidence suggests that the Atlantic meridional overturning circulation (AMOC) was about 1000 m shallower at the Last Glacial Maximum (LGM) compared to the present. Yet it remains unresolved what caused this glacial shoaling of the AMOC, and many climate models instead simulate a deeper AMOC under LGM forcing. While some studies suggest that Southern Ocean surface buoyancy forcing controls the AMOC depth, others have suggested alternatively that North Atlantic surface forcing or interior diabatic mixing plays the dominant role. To investigate the key processes that set the AMOC depth, here we carry out a number of MITgcm ocean-only simulations with surface forcing fields specified from the simulation results of three coupled climate models that span much of the range of glacial AMOC depth changes in phase 3 of the Paleoclimate Model Intercomparison Project (PMIP3). We find that the MITgcm simulations successfully reproduce the changes in AMOC depth between glacial and modern conditions simulated in these three PMIP3 models. By varying the restoring time scale in the surface forcing, we show that the AMOC depth is more strongly constrained by the surface density field than the surface buoyancy flux field. Based on these results, we propose a mechanism by which the surface density fields in the high latitudes of both hemispheres are connected to the AMOC depth. We illustrate the mechanism using MITgcm simulations with idealized surface forcing perturbations as well as an idealized conceptual geometric model. These results suggest that the AMOC depth is largely determined by the surface density fields in both the North Atlantic and the Southern Ocean.


2012 ◽  
Vol 25 (12) ◽  
pp. 4081-4096 ◽  
Author(s):  
Matthijs den Toom ◽  
Henk A. Dijkstra ◽  
Andrea A. Cimatoribus ◽  
Sybren S. Drijfhout

Abstract The impact of atmospheric feedbacks on the multiple equilibria (ME) regime of the Atlantic meridional overturning circulation (MOC) is investigated using a fully implicit hybrid coupled model (HCM). The HCM consists of a global ocean model coupled to an empirical atmosphere model that is based on linear regressions of the heat, net evaporative, and momentum fluxes generated by a fully coupled climate model onto local as well as Northern Hemisphere averaged sea surface temperatures. Using numerical continuation techniques, bifurcation diagrams are constructed for the HCM with the strength of an anomalous freshwater flux as the bifurcation parameter, which allows for an efficient first-order estimation of the effect of interactive surface fluxes on the MOC stability. The different components of the atmospheric fluxes are first considered individually and then combined. Heat feedbacks act to destabilize the present-day state of the MOC and to stabilize the collapsed state, thus leaving the size of the ME regime almost unaffected. In contrast, interactive freshwater fluxes cause a destabilization of both the present-day and collapsed states of the MOC. Wind feedbacks are found to have a minor impact. The joint effect of the three interactive fluxes is to narrow the range of ME. The shift of the saddle-node bifurcation that terminates the present-day state of the ocean is further investigated by adjoint sensitivity analysis of the overturning rate to surface fluxes. It is found that heat feedbacks primarily affect the MOC stability when they change the heat fluxes over the North Atlantic subpolar gyre, whereas interactive freshwater fluxes have an effect everywhere in the Atlantic basin.


Sign in / Sign up

Export Citation Format

Share Document