Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

2017 ◽  
Vol 50 (11-12) ◽  
pp. 4231-4247 ◽  
Author(s):  
Tebikachew Betru Tariku ◽  
Thian Yew Gan
2012 ◽  
Vol 93 (9) ◽  
pp. 1363-1387 ◽  
Author(s):  
Xin-Zhong Liang ◽  
Min Xu ◽  
Xing Yuan ◽  
Tiejun Ling ◽  
Hyun I. Choi ◽  
...  

The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model. This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3670
Author(s):  
Denis E.K. Dzebre ◽  
Muyiwa S. Adaramola

This paper examines the impacts of five planetary boundary layer (PBL) parameterization schemes paired with several compatible surface layer (SL) parameterization schemes in the Weather Research and Forecasting Model on wind hindcasts for resource assessment purposes in a part of Coastal Ghana. Model predictions of hourly wind speeds at 3 × 3 km2 and 9 × 9 km2 grid boxes were compared with measurements at 40 m, 50 m, and 60 m. It was found that the Mellor-Yamada Nakanishi and Niino Level 3 (MYNN3) PBL scheme generally predicted winds with a relatively better combination of error metrics, irrespective of the SL scheme it was paired with. When paired with the Eta surface layer scheme, it often produced some of the relatively fewest errors in estimated mean wind power density (WPD) and Weibull cumulative density. A change in the simulation grid size did not have a significant impact on the conclusions of the relative performance of the PBL-SL pairs that were tested. The results indicate that the MYNN3 PBL and Eta SL pair is probably best for wind speed and energy assessments for this part of coastal Ghana.


Sign in / Sign up

Export Citation Format

Share Document