Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016)

2017 ◽  
Vol 34 (10) ◽  
pp. 1235-1248 ◽  
Author(s):  
Bin Wang ◽  
Juan Li ◽  
Qiong He
Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 140
Author(s):  
Wenping Jiang ◽  
Gen Li ◽  
Gongjie Wang

El Niño events vary from case to case with different decaying paces. In this study, we demonstrate that the different El Niño decaying paces have distinct impacts on the East Asian monsoon circulation pattern during post-El Niño summers. For fast decaying (FD) El Niño summers, a large-scale anomalous anticyclone dominates over East Asia and the North Pacific from subtropical to mid-latitude; whereas, the East Asian monsoon circulation display a dipole pattern with anomalous northern cyclone and southern anticyclone for slow decaying (SD) El Niño summers. The difference in anomalous East Asian monsoon circulation patterns was closely associated with the sea surface temperature (SST) anomaly patterns in the tropics. In FD El Niño summers, the cold SST anomalies in the tropical central-eastern Pacific and warm SST anomalies in the Maritime Continent induce the anticyclone anomalies over the Northwest Pacific. In contrast, the warm Kelvin wave anchored over the tropical Indian Ocean during SD El Niño summers plays a crucial role in sustaining the anticyclone anomalies over the Northwest Pacific. In particular, the opposite atmospheric circulation anomaly patterns over Northeast Asia and the mid-latitude North Pacific are mainly modulated by the stationary Rossby wave trains triggered by the opposite SST anomalies in the tropical eastern Pacific during FD and SD El Niño summers. Finally, the effect of distinct summer monsoon circulation patterns associated with the El Niño decay pace on the summer climate over East Asia are also discussed.


2019 ◽  
Vol 53 (9-10) ◽  
pp. 6417-6435 ◽  
Author(s):  
Peng Wang ◽  
Chi-Yung Tam ◽  
Kang Xu

2006 ◽  
Vol 19 (18) ◽  
pp. 4508-4530 ◽  
Author(s):  
Ngar-Cheung Lau ◽  
Mary Jo Nath

Abstract The impacts of ENSO on the evolution of the East Asian monsoon have been studied using output from a general circulation model experiment. Observed monthly variations of the sea surface temperature (SST) field have been prescribed in the tropical eastern and central Pacific, whereas the atmosphere has been coupled to an oceanic mixed layer model beyond this forcing region. During the boreal summer of typical El Niño events, a low-level cyclonic anomaly is simulated over the North Pacific in response to enhanced condensational heating over the equatorial central Pacific. Advective processes associated with the cyclone anomaly lead to temperature tendencies that set the stage for the abrupt establishment of a strong Philippine Sea anticyclone (PSAC) anomaly in the autumn. The synoptic development during the onset of the PSAC anomaly is similar to that accompanying cold-air surges over East Asia. The air–sea interactions accompanying the intraseasonal variations (ISV) in the model atmosphere exhibit a strong seasonal dependence. During the summer, the climatological monsoon trough over the subtropical western Pacific facilitates positive feedbacks between the atmospheric and oceanic fluctuations. Conversely, the prevalent northeasterly monsoon over this region in the winter leads to negative feedbacks. The onset of the PSAC anomaly is seen to be coincident with a prominent episode of the leading ISV mode. The ENSO events could influence the amplitude of the ISV by modulating the large-scale flow environment in which the ISV are embedded. Amplification of the summer monsoon trough over the western Pacific during El Niño enhances air–sea feedbacks on intraseasonal time scales, thereby raising the amplitudes of the ISV. A weakening of the northeasterly monsoon in El Niño winters suppresses the frequency and strength of the cold-air surges associated with the leading ISV mode in that season. Many aspects of the model simulation of the relationships between ENSO and the East Asian monsoon are in agreement with observational findings.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
James R. Thomson ◽  
Philip B. Holden ◽  
Pallavi Anand ◽  
Neil R. Edwards ◽  
Cécile A. Porchier ◽  
...  

AbstractAsian Monsoon rainfall supports the livelihood of billions of people, yet the relative importance of different drivers remains an issue of great debate. Here, we present 30 million-year model-based reconstructions of Indian summer monsoon and South East Asian monsoon rainfall at millennial resolution. We show that precession is the dominant direct driver of orbital variability, although variability on obliquity timescales is driven through the ice sheets. Orographic development dominated the evolution of the South East Asian monsoon, but Indian summer monsoon evolution involved a complex mix of contributions from orography (39%), precession (25%), atmospheric CO2 (21%), ice-sheet state (5%) and ocean gateways (5%). Prior to 15 Ma, the Indian summer monsoon was broadly stable, albeit with substantial orbital variability. From 15 Ma to 5 Ma, strengthening was driven by a combination of orography and glaciation, while closure of the Panama gateway provided the prerequisite for the modern Indian summer monsoon state through a strengthened Atlantic meridional overturning circulation.


2008 ◽  
Vol 4 (6) ◽  
pp. 1289-1317 ◽  
Author(s):  
D.-D. Rousseau ◽  
N. Wu ◽  
Y. Pei ◽  
F. Li

Abstract. Chinese loess sequences are interpreted as a reliable record of the past variation of the East Asian monsoon regime through the alternation of loess and paleosols units, dominated by the winter and summer monsoon, respectively. Different proxies have been used to describe this system, mostly geophysical, geochemical or sedimentological. Terrestrial mollusks are also a reliable proxy of past environmental conditions and are often preserved in large numbers in loess deposits. The analysis of the mollusk remains in the Luochuan sequence, comprising L5 loess to S0 soil, i.e. the last 500 ka, shows that for almost all identified species, the abundance is higher at the base of the interval (L5 to L4) than in the younger deposits. Using the present ecological requirements of the identified mollusk species in the Luochuan sequence allows the definition of two main mollusk groups varying during the last 500 kyr. The cold-aridiphilous individuals indicate the so-called Asian winter monsoon regime and predominantly occur during glacials, when dust is deposited. The thermal-humidiphilous mollusks are prevalent during interglacial or interstadial conditions of the Asian summer monsoon, when soil formation takes place. In the sequence, three events with exceptionally high abundance of the Asian summer monsoon indicators are recorded during the L5, L4 and L2 glacial intervals, i.e., at about 470, 360 and 170 kyr, respectively. The L5 and L4 events appear to be the strongest (high counts). Similar variations have also been identified in the Xifeng sequence, distant enough from Luochuan, but also in Lake Baikal further North, to suggest that this phenomenon is regional rather than local. The indicators of the summer monsoon within the glacial intervals imply a strengthened East-Asian monsoon interpreted as corresponding to marine isotope stages 6, 10 and 12, respectively. The L5 and L2 summer monsoons are coeval with Mediterranean sapropels S12 and S6, which characterize a strong African summer monsoon with relatively low surface water salinity in the Indian Ocean. Changes in the precipitation regime could correspond to a response to a particular astronomical configuration (low obliquity, low precession, summer solstice at perihelion) leading to an increased summer insolation gradient between the tropics and the high latitudes and resulting in enhanced atmospheric water transport from the tropics to the African and Asian continents. However, other climate drivers such as reorganization of marine and atmospheric circulations, tectonic, and the extent of the Northern Hemisphere ice sheet are also discussed.


Science ◽  
2018 ◽  
Vol 360 (6391) ◽  
pp. 877-881 ◽  
Author(s):  
J. Warren Beck ◽  
Weijian Zhou ◽  
Cheng Li ◽  
Zhenkun Wu ◽  
Lara White ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document