Inhibiting matrix metalloproteinase-2 reduces protein release into coronary effluent from isolated rat hearts during ischemia-reperfusion

2008 ◽  
Vol 103 (5) ◽  
pp. 431-443 ◽  
Author(s):  
Justyna Fert-Bober ◽  
Hernando Leon ◽  
Jolanta Sawicka ◽  
Rashpal S. Basran ◽  
Richard M. Devon ◽  
...  
2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Justyna Fert‐Bober ◽  
Hernando Leon ◽  
Jolanta Sawicka ◽  
Paul Basran ◽  
Richard Schulz ◽  
...  

2021 ◽  
Vol 14 (12) ◽  
pp. 1276
Author(s):  
Monika Skrzypiec-Spring ◽  
Joanna Urbaniak ◽  
Agnieszka Sapa-Wojciechowska ◽  
Jadwiga Pietkiewicz ◽  
Alina Orda ◽  
...  

Matrix metalloproteinase 2 (MMP-2) is activated in hearts upon ischemia-reperfusion (IR) injury and cleaves sarcomeric proteins. It was shown that carvedilol and nebivolol reduced the activity of different MMPs. Hence, we hypothesized that they could reduce MMPs activation in myocytes, and therefore, protect against cardiac contractile dysfunction related with IR injury. Isolated rat hearts were subjected to either control aerobic perfusion or IR injury: 25 min of aerobic perfusion, followed by 20 min global, no-flow ischemia, and reperfusion for 30 min. The effects of carvedilol, nebivolol, or metoprolol were evaluated in hearts subjected to IR injury. Cardiac mechanical function and MMP-2 activity in the heart homogenates and coronary effluent were assessed along with troponin I content in the former. Only carvedilol improved the recovery of mechanical function at the end of reperfusion compared to IR injury hearts. IR injury induced the activation and release of MMP-2 into the coronary effluent during reperfusion. MMP-2 activity in the coronary effluent increased in the IR injury group and this was prevented by carvedilol. Troponin I levels decreased by 73% in IR hearts and this was abolished by carvedilol. Conclusions: These data suggest that the cardioprotective effect of carvedilol in myocardial IR injury may be mediated by inhibiting MMP-2 activation.


2010 ◽  
Vol 29 (1) ◽  
pp. 31-40 ◽  
Author(s):  
A. Špániková ◽  
M. Ivanová ◽  
J. Matejíková ◽  
T. Ravingerová ◽  
M. Barančík

2005 ◽  
Vol 289 (2) ◽  
pp. H614-H623 ◽  
Author(s):  
Harjot K. Saini ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Extracellular ATP is known to augment cardiac contractility by increasing intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes; however, the status of ATP-mediated Ca2+ mobilization in hearts undergoing ischemia-reperfusion (I/R) has not been examined previously. In this study, therefore, isolated rat hearts were subjected to 10–30 min of global ischemia and 30 min of reperfusion, and the effect of extracellular ATP on [Ca2+]i was measured in purified cardiomyocytes by fura-2 microfluorometry. Reperfusion for 30 min of 20-min ischemic hearts, unlike 10-min ischemic hearts, revealed a partial depression in cardiac function and ATP-induced increase in [Ca2+]i; no changes in basal [Ca2+]i were evident in 10- or 20-min I/R preparations. On the other hand, reperfusion of 30-min ischemic hearts for 5, 15, or 30 min showed a marked depression in both cardiac function and ATP-induced increase in [Ca2+]i and a dramatic increase in basal [Ca2+]i. The positive inotropic effect of extracellular ATP was attenuated, and the maximal binding characteristics of 35S-labeled adenosine 5′-[γ-thio]triphosphate with crude membranes from hearts undergoing I/R was decreased. ATP-induced increase in [Ca2+]i in cardiomyocytes was depressed by verapamil and Cibacron Blue in both control and I/R hearts; however, this response in I/R hearts, unlike control hearts, was not affected by ryanodine. I/R-induced alterations in cardiac function and ATP-induced increase in [Ca2+]i were attenuated by treatment with an antioxidant mixture and by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2. The results suggest an impairment of extracellular ATP-induced Ca2+ mobilization in I/R hearts, and this defect appears to be mediated through oxidative stress.


1990 ◽  
Vol 22 ◽  
pp. S64
Author(s):  
Arpad Tosaki ◽  
Matyas Koltai ◽  
Thierry Tarrade ◽  
Pierre Braquet

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Jonathas F Almeida ◽  
Robson A Santos

Alamandine, a biologically active peptide of the renin-angiotensin system (RAS), was recently described and characterized. Further it has been shown to present effects similar to those elicited by Ang-(1-7). It has been described that Ang-(1-7) decreases the incidence and duration of ischemia-reperfusion arrhythmias and improved the post-ischemic function in isolated perfused rat hearts. In this study we aimed to evaluate the effects of Alamandine in isolated rat hearts subjected to myocardial infarction (MI). Wistar rats weighing between 250-300g were euthanized and their hearts were placed on Langendorff apparatus to evaluate the cardiac parameters. Hearts were submitted to 30min of stabilization, 30min of partial ischemia by occlusion of the left descending coronary artery and 30min of reperfusion. Drugs (alamandine 22pM, d-pro7-ang-(1-7) 220pM) were added to the perfusion setting from the beginning of the experiment until the end. 2,3,5-trypheniltetrazolium chloride were used to evaluate the extension of infarcted area. In control hearts (CON), there was a decrease on the left ventricular systolic pressure (LVSP) on ischemic period (54,6 ± 6,9mmHg) compared to the baseline period (84,6 ± 11,6mmHg). Alamandine (ALA) attenuated that decrease in the ischemic period (66,9 ± 7,9mmHg) vs (82,3 ± 8,9mmHg). Further, ischemia led to a decrease in the left ventricular developed pressure (dLVP), dP/dt maximum and minimum when compared to baseline values. ALA, once more, kept the ischemic parameters of dLVP and dP/dt max and min (58,9 ± 8mmHg; 1629 ± 202,2mmHg/s; 1101 ± 130mmHg/s, respectively) similar to those of baseline period (68,9 ± 8,92; 1682 ± 248,8; 1179 ± 118,6 mmHg, respectively). Ischemia/reperfusion induced an arrhythmia severity index (ASI) in control hearts (4,9 ± 1,26) higher than in hearts treated with ALA (1,10 ± 0,58). ALA also reduced infarcted area (19,64 ± 2,61%) compared with CON (33,85 ± 4,55%). All those effects were blocked by D-PRO7-Ang-(1-7). In conclusion, our data shown that Alamandine exert cardioprotective effects in post-ischemic function in isolated rat hearts by preventing LVSP, dLVP , dP/dt max and min decrease. Furthermore it reduced the infarcted area and I/R arrhythmias, apparently involving MrgD receptor participation.


2019 ◽  
Vol 317 (3) ◽  
pp. C613-C625 ◽  
Author(s):  
Xiaoyu Ren ◽  
Graham D. Lamb ◽  
Robyn M. Murphy

A substantial intracellular localization of matrix metalloproteinase 2 (MMP2) has been reported in cardiomyocytes, where it plays a role in the degradation of the contractile apparatus following ischemia-reperfusion injury. Whether MMP2 may have a similar function in skeletal muscle is unknown. This study determined that the absolute amount of MMP2 is similar in rat skeletal and cardiac muscle and human muscle (~10–18 nmol/kg muscle wet wt) but is ~50- to 100-fold less than the amount of calpain-1. We compared mechanically skinned muscle fibers, where the extracellular matrix (ECM) is completely removed, with intact fiber segments and found that ~30% of total MMP2 was associated with the ECM, whereas ~70% was inside the muscle fibers. Concordant with whole muscle fractionation, further separation of skinned fiber segments into cytosolic, membranous, and cytoskeletal and nuclear compartments indicated that ~57% of the intracellular MMP2 was freely diffusible, ~6% was associated with the membrane, and ~37% was bound within the fiber. Under native zymography conditions, only 10% of MMP2 became active upon prolonged (17 h) exposure to 20 μM Ca2+, a concentration that would fully activate calpain-1 in seconds to minutes; full activation of MMP2 would require ~1 mM Ca2+. Given the prevalence of intracellular MMP2 in skeletal muscle, it is necessary to investigate its function using physiological conditions, including isolation of any potential functional relevance of MMP2 from that of the abundant protease calpain-1.


Sign in / Sign up

Export Citation Format

Share Document