Histological evidence of redox system breakdown caused by superoxide dismutase 1 (SOD1) aggregation is common to SOD1-mutated motor neurons in humans and animal models

2004 ◽  
Vol 107 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Shinsuke Kato ◽  
Yusuke Saeki ◽  
Masashi Aoki ◽  
Makiko Nagai ◽  
Aya Ishigaki ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Taisei Ito ◽  
Masatoshi Inden ◽  
Tomoyuki Ueda ◽  
Yuta Asaka ◽  
Hisaka Kurita ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective and progressive loss of motor neurons. Although many drugs have entered clinical trials, few have shown effectiveness in the treatment of ALS. Other studies have shown that the stimulation of α7 nicotinic acetylcholine receptor (nAChR) can have neuroprotective effects in some models of neurodegenerative disease, as well as prevent glutamate-induced motor neuronal death. However, the effect of α7 nAChR agonists on ALS-associated mutant copper–zinc superoxide dismutase 1 (SOD1) aggregates in motor neurons remains unclear. In the present study, we examined whether α7 nAChR activation had a neuroprotective effect against SOD1G85R-induced toxicity in a cellular model for ALS. We found that α7 nAChR activation by PNU282987, a selective agonist of α7 nAChR, exhibited significant neuroprotective effects against SOD1G85R-induced toxicity via the reduction of intracellular protein aggregates. This reduction also correlated with the activation of autophagy through the AMP-activated protein kinase (AMPK)–mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, the activation of α7 nAChRs was found to increase the biogenesis of lysosomes by inducing translocation of the transcription factor EB (TFEB) into the nucleus. These results support the therapeutic potential of α7 nAChR activation in diseases that are characterized by SOD1G85R aggregates, such as ALS.


Neuroreport ◽  
2005 ◽  
Vol 16 (6) ◽  
pp. 585-589 ◽  
Author(s):  
Hyun-Jung Kim ◽  
Jong-Min Kim ◽  
Jong-Ha Park ◽  
Jung-Joon Sung ◽  
Manho Kim ◽  
...  

2020 ◽  
Author(s):  
Isao Hozumi ◽  
Taisei Ito ◽  
Masatoshi Inden ◽  
Tomoyuki Ueda ◽  
Yuta Asaka ◽  
...  

Abstract BackgroundAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective and progressive loss of motor neurons. Although many drugs have entered clinical trials, few have shown effectiveness in the treatment of ALS. Previous studies searching for causal genes associated with familial ALS identified the copper-zinc superoxide dismutase 1 (SOD1). Other studies have shown that the stimulation of α7 nicotinic acetylcholine receptor (nAChR) can have neuroprotective effects in some models of neurodegenerative disease, as well as prevent glutamate-induced motor neuronal death. However, the effect of α7 nAChR agonists on mutant SOD1 aggregates in motor neurons remains unclear.MethodsWe examined whether α7 nAChR activation had a neuroprotective effect against SOD1G85R-induced toxicity in a cellular model for ALS. Furthermore, the mechanism was also examined by Western blot analysis and qRT-PCR.ResultsWe found that α7 nAChR activation showed significant neuroprotective effects against SOD1G85R-induced toxicity via the reduction of intracellular protein aggregates. This reduction also correlated with the activation of autophagy through the AMP-activated protein kinase (AMPK)–mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, the activation of α7 nAChRs was found to increase the biogenesis of lysosomes by inducing translocation of the transcription factor EB (TFEB) into the nucleus.ConclusionsThese results support the therapeutic potential of α7 nAChR activation in diseases that are characterized by SOD1G85R aggregates, such as ALS.


2019 ◽  
Vol 20 (12) ◽  
pp. 2942 ◽  
Author(s):  
Tomoyuki Ueda ◽  
Taisei Ito ◽  
Hisaka Kurita ◽  
Masatoshi Inden ◽  
Isao Hozumi

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons. In previous our study, an ethanol extract of Brazilian green propolis (EBGP) prevented mutant copper–zinc superoxide dismutase 1 (SOD1mut)-induced neurotoxicity. This paper aims to reveal the effects of p-coumaric acid (p-CA), an active ingredient contained in EBGP, against SOD1mut-induced neurotoxicity. We found that p-CA reduced the accumulation of SOD1mut subcellular aggregation and prevented SOD1mut-associated neurotoxicity. Moreover, p-CA attenuated SOD1mut-induced oxidative stress and endoplasmic reticulum stress, which are significant features in ALS pathology. To examine the mechanism of neuroprotective effects, we focused on autophagy, and we found that p-CA induced autophagy. Additionally, the neuroprotective effects of p-CA were inhibited by chloroquine, an autophagy inhibiter. Therefore, these results obtained in this paper suggest that p-CA prevents SOD1mut-induced neurotoxicity through the activation of autophagy and provides a potential therapeutic approach for ALS.


2020 ◽  
Vol 21 (10) ◽  
pp. 3419
Author(s):  
Efrat Shavit-Stein ◽  
Ihab Abu Rahal ◽  
Doron Bushi ◽  
Orna Gera ◽  
Roni Sharon ◽  
...  

Glia cells are involved in upper motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Protease activated receptor 1 (PAR1) pathway is related to brain pathologies. Brain PAR1 is located on peri-synaptic astrocytes, adjacent to pyramidal motor neurons, suggesting possible involvement in ALS. Brain thrombin activity in superoxide dismutase 1 (SOD1) mice was measured using a fluorometric assay, and PAR1 levels by western blot. PAR1 was localized using immunohistochemistry staining. Treatment targeted PAR1 pathway on three levels; thrombin inhibitor TLCK (N-Tosyl-Lys-chloromethylketone), PAR1 antagonist SCH-79797 and the Ras intracellular inhibitor FTS (S-trans-trans-farnesylthiosalicylic acid). Mice were weighed and assessed for motor function and survival. SOD1 brain thrombin activity was increased (p < 0.001) particularly in the posterior frontal lobe (p = 0.027) and hindbrain (p < 0.01). PAR1 levels were decreased (p < 0.001, brain, spinal cord, p < 0.05). PAR1 and glial fibrillary acidic protein (GFAP) staining decreased in the cerebellum and cortex. SOD1 mice lost weight (≥17 weeks, p = 0.047), and showed shorter rotarod time (≥14 weeks, p < 0.01). FTS 40mg/kg significantly improved rotarod scores (p < 0.001). Survival improved with all treatments (p < 0.01 for all treatments). PAR1 antagonism was the most efficient, with a median survival improvement of 10 days (p < 0.0001). Our results support PAR1 pathway involvement in ALS.


2020 ◽  
Vol 295 (12) ◽  
pp. 3808-3825 ◽  
Author(s):  
Sabrina Semmler ◽  
Myriam Gagné ◽  
Pranav Garg ◽  
Sarah R. Pickles ◽  
Charlotte Baudouin ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the selective loss of motor neurons leading to paralysis. Mutations in the gene encoding superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS, and considerable evidence suggests that these mutations result in an increase in toxicity due to protein misfolding. We previously demonstrated in the SOD1G93A rat model that misfolded SOD1 exists as distinct conformers and forms deposits on mitochondrial subpopulations. Here, using SOD1G93A rats and conformation-restricted antibodies specific for misfolded SOD1 (B8H10 and AMF7-63), we identified the interactomes of the mitochondrial pools of misfolded SOD1. This strategy identified binding proteins that uniquely interacted with either AMF7-63 or B8H10-reactive SOD1 conformers as well as a high proportion of interactors common to both conformers. Of this latter set, we identified the E3 ubiquitin ligase TNF receptor–associated factor 6 (TRAF6) as a SOD1 interactor, and we determined that exposure of the SOD1 functional loops facilitates this interaction. Of note, this conformational change was not universally fulfilled by all SOD1 variants and differentiated TRAF6 interacting from TRAF6 noninteracting SOD1 variants. Functionally, TRAF6 stimulated polyubiquitination and aggregation of the interacting SOD1 variants. TRAF6 E3 ubiquitin ligase activity was required for the former but was dispensable for the latter, indicating that TRAF6-mediated polyubiquitination and aggregation of the SOD1 variants are independent events. We propose that the interaction between misfolded SOD1 and TRAF6 may be relevant to the etiology of ALS.


1998 ◽  
Vol 95 (16) ◽  
pp. 9631-9636 ◽  
Author(s):  
Toni L. Williamson ◽  
Lucie I. Bruijn ◽  
Qinzhang Zhu ◽  
Karen L. Anderson ◽  
Scott D. Anderson ◽  
...  

Mutations in superoxide dismutase 1 (SOD1), the only proven cause of amyotrophic lateral sclerosis (ALS), provoke disease through an unidentified toxic property. Neurofilament aggregates are pathologic hallmarks of both sporadic and SOD1-mediated familial ALS. By deleting NF-L, the major neurofilament subunit required for filament assembly, onset and progression of disease caused by familial ALS-linked SOD1 mutant G85R are significantly slowed, while selectivity of mutant-mediated toxicity for motor neurons is reduced. In NF-L-deleted animals, levels of the two remaining neurofilament subunits, NF-M and NF-H, are markedly reduced in axons but are elevated in motor neuron cell bodies. Thus, while neither perikaryal nor axonal neurofilaments are essential for SOD1-mediated disease, the absence of assembled neurofilaments both diminishes selective vulnerability and slows SOD1G85R mutant-mediated toxicity to motor neurons.


Sign in / Sign up

Export Citation Format

Share Document