scholarly journals The near-solidus transition from garnet lherzolite to spinel lherzolite

2000 ◽  
Vol 138 (3) ◽  
pp. 237-248 ◽  
Author(s):  
Stephan Klemme ◽  
Hugh StC. O'Neill
2020 ◽  
Vol 105 (10) ◽  
pp. 1445-1471
Author(s):  
Edward M. Stolper ◽  
Oliver Shorttle ◽  
Paula M. Antoshechkina ◽  
Paul D. Asimow

Abstract Decades of study have documented several orders of magnitude variation in the oxygen fugacity (fO2) of terrestrial magmas and of mantle peridotites. This variability has commonly been attributed either to differences in the redox state of multivalent elements (e.g., Fe3+/Fe2+) in mantle sources or to processes acting on melts after segregation from their sources (e.g., crystallization or degassing). We show here that the phase equilibria of plagioclase, spinel, and garnet lherzolites of constant bulk composition (including whole-rock Fe3+/Fe2+) can also lead to systematic variations in fO2 in the shallowest ~100 km of the mantle. Two different thermodynamic models were used to calculate fO2 vs. pressure and temperature for a representative, slightly depleted peridotite of constant composition (including total oxygen). Under subsolidus conditions, increasing pressure in the plagioclase-lherzolite facies from 1 bar up to the disappearance of plagioclase at the lower pressure limit of the spinel-lherzolite facies leads to an fO2 decrease (normalized to a metastable plagioclase-free peridotite of the same composition at the same pressure and temperature) of ~1.25 orders of magnitude. The spinel-lherzolite facies defines a minimum in fO2 and increasing pressure in this facies has little influence on fO2 (normalized to a metastable spinel-free peridotite of the same composition at the same pressure and temperature) up to the appearance of garnet in the stable assemblage. Increasing pressure across the garnet-lherzolite facies leads to increases in fO2 (normalized to a metastable garnet-free peridotite of the same composition at the same pressure and temperature) of ~1 order of magnitude from the low values of the spinel-lherzolite facies. These changes in normalized fO2 reflect primarily the indirect effects of reactions involving aluminous phases in the peridotite that either produce or consume pyroxene with increasing pressure: Reactions that produce pyroxene with increasing pressure (e.g., forsterite + anorthite ⇄ Mg-Tschermak + diopside in plagioclase lherzolite) lead to dilution of Fe3+-bearing components in pyroxene and therefore to decreases in normalized fO2, whereas pyroxene-consuming reactions (e.g., in the garnet stability field) lead initially to enrichment of Fe3+-bearing components in pyroxene and to increases in normalized fO2 (although this is counteracted to some degree by progressive partitioning of Fe3+ from the pyroxene into the garnet with increasing pressure). Thus, the variations in normalized fO2 inferred from thermodynamic modeling of upper mantle peridotite of constant composition are primarily passive consequences of the same phase changes that produce the transitions from plagioclase → spinel → garnet lherzolite and the variations in Al content in pyroxenes within each of these facies. Because these variations are largely driven by phase changes among Al-rich phases, they are predicted to diminish with the decrease in bulk Al content that results from melt extraction from peridotite, and this is consistent with our calculations. Observed variations in FMQ-normalized fO2 of primitive mantle-derived basalts and peridotites within and across different tectonic environments probably mostly reflect variations in the chemical compositions (e.g., Fe3+/Fe2+ or bulk O2 content) of their sources (e.g., produced by subduction of oxidizing fluids, sediments, and altered oceanic crust or of reducing organic material; by equilibration with graphite- or diamond-saturated fluids; or by the effects of partial melting). However, we conclude that in nature the predicted effects of pressure- and temperature-dependent phase equilibria on the fO2 of peridotites of constant composition are likely to be superimposed on variations in fO2 that reflect differences in the whole-rock Fe3+/Fe2+ ratios of peridotites and therefore that the effects of phase equilibria should also be considered in efforts to understand observed variations in the oxygen fugacities of magmas and their mantle sources.


1977 ◽  
Vol 14 (6) ◽  
pp. 1202-1210 ◽  
Author(s):  
Roger H. Mitchell

Ultramafic xenoliths from the Elwin Bay kimberlite provide samples of the upper mantle beneath arctic Canada. The compositions of coexisting pyroxenes have been used to estimate the temperatures and pressures of equilibration of the three texturally and mineralogically distinct types of xenolith, i.e. spinel lherzolite (840–935 °C), coarse garnet lherzolite (925–1085 °C at 39.5–49.5 kbar (3.95–4.95 × 106 kPa)) and porphyroclastic garnet lherzolite (1090–1180 °C at 47.0–51.5 kbar (4.7–5.2 × 106 kPa)). The garnet lherzolite data define an inflected paleogeotherm whose upper limb lies at shallower depths than found for the Thaba Putsoa – Mothae paleogeotherm but which is identical to the Montana paleogeotherm. No evidence is found for iron enrichment of the upper mantle in this region.


2000 ◽  
Vol 37 (7) ◽  
pp. 1053-1071 ◽  
Author(s):  
Pauline Orr ◽  
Robert W Luth

The Torrie, Sputnik, and Eddie kimberlite rocks, located near Yamba Lake, central Slave province, N.W.T., are volcaniclastic, macrocrystic, heterolithic, olivine-rich tuff, and olivine-rich tuff breccia. Torrie and Sputnik kimberlite rocks contain pyroxene and garnet xenocrysts and megacrysts with major-element compositions consistent with derivation mostly from disaggregated garnet lherzolite, with subordinate contributions from eclogite, spinel lherzolite, garnet harzburgite, and websterite. The presence of primary groundmass phlogopite and compositionally evolved spinel, and the absence of mantle xenocrysts, xenoliths, and megacrystic ilmenite distinguish the Eddie kimberlite pipe from the other two kimberlite pipes. Large variations in δ18O of garnet and clinopyroxene in xenocrysts and xenoliths (+3.98 to +6.36‰), nonequilibrium intermineral isotopic fractionation, and major-element heterogeneity are interpreted as resulting from infiltration of fluids or melts produced by dehydration or melting of subducted oceanic crust into overlying peridotite. Although the timing is unconstrained for the xenocysts, the xenolith must have experienced this metasomatic interaction shortly before entrainment in the kimberlite. Variable δ18O values for magnesian ilmenite are also interpreted to result indirectly from such metasomatic activity in the mantle as well. The Torrie and Sputnik kimberlite rocks have low concentrations of diamond indicator minerals consistent with their low-diamond grades. These kimberlite rocks did not sample a significant amount of garnet harzburgite, the rock type commonly associated with high-diamond grades in other kimberlite rocks. Furthermore, metasomatism just prior to kimberlite eruption may have caused the resorption of any diamond present.


1994 ◽  
Vol 31 (5) ◽  
pp. 852-864 ◽  
Author(s):  
J. R. Riehle ◽  
J. R. Budahn ◽  
M. A. Lanphere ◽  
D. A. Brew

Pleistocene basalt of the Mount Edgecumbe volcanic field (MEF) is subdivided into a plagioclase type and an olivine type. Olivine basalt crops out farther inboard from the nearby Fairweather transform than plagioclase basalt. Th/La ratios of plagioclase basalt are similar to those of mid-ocean-ridge basalt (MORB), whereas those of olivine basalt are of continental affinity. The olivine basalt has higher 87Sr/86Sr ratios than the plagioclase basalt.We model rare earth element (REE) contents of the olivine basalt, which resemble those of transitional MORB, by 10–15% partial melting of fertile spinel–plagioclase lherzolite followed by removal of 8–13% olivine. Normative mineralogy indicates melting in the spinel stability field. REE contents of an undersaturated basalt (sample 5L005) resemble those of Mauna Loa tholeiite and are modelled by 5–10% partial melting of fertile garnet lherzolite followed by 10% olivine removal. Plagioclase basalt resembles sample 5L005 in REE contents but is lower in other incompatible-element contents and 87Sr/86Sr ratios. Plagioclase basalt either originated in depleted garnet lherzolite or is a mixture of sample 5L005 and normal MORB; complex zoning of plagioclase and colinear Sc and Th contents are consistent with magma mixing.We conclude that olivine basalt originated in subcontinental spinel lherzolite and that plagioclase basalt may have originated in suboceanic lithosphere of the Pacific plate. Lithospheric melting seemingly requires vertical flow of mantle material, although there is no direct evidence at the MEF for crustal extension that might provide a mechanism for mantle advection. In any case, most MEF magmas are subalkaline because of moderately high degrees of partial melting at shallow depth.


1985 ◽  
Vol 22 (8) ◽  
pp. 1103-1111 ◽  
Author(s):  
G. Nelson Eby

The mafic alkaline dikes of the Monteregian Hills and younger White Mountain igneous provinces can be divided into three groups: (1) K2O-rich alnoites; (2) moderately to strongly undersaturated monchiquites, camptonites, and basanites; and (3) slightly undersaturated to critically saturated camptonites and alkali olivine basalts. The dikes were emplaced between 139 and 107 Ma, with the bulk of the activity occurring in three discrete intervals: 139–129, 121–117, and 110–107 Ma. The first two intervals correspond to the times of emplacement of the main Monteregian intrusions. There is no apparent geographic pattern to the ages.Chemical evolution of the group 2 and group 3 magmas was largely controlled by the removal of olivine, clinopyroxene, and Fe–Ti-rich oxides. The group 2 dikes are generally enriched in REE and have higher La/Yb ratios (18–28) than the group 3 dikes (La/Yb = 9–23). For the majority of the samples Zr/Hf ratios (30–43) and Rb/Ba × 102 ratios (4.8–11.6) fall in the range of primary basalts, but some samples have higher ratios, indicating crustal contamination.Trace-element models indicate that the group 2 and group 3 magmas originated by variable degrees of melting of a metasomatized spinel lherzolite whereas the group 1 magmas most likely originated in a carbonated garnet lherzolite mantle. The thermal energy for the melting may have been provided by a mantle plume.


Geology ◽  
1977 ◽  
Vol 5 (5) ◽  
pp. 278 ◽  
Author(s):  
John Ferguson ◽  
D. J. Ellis ◽  
R. N. England
Keyword(s):  

1987 ◽  
Vol 24 (8) ◽  
pp. 1679-1687 ◽  
Author(s):  
Dante Canil ◽  
Mark Brearley ◽  
Christopher M. Scarfe

One hundred mantle xenoliths were collected from a hawaiite flow of Miocene–Pliocene age near Rayfield River, south-central British Columbia. The massive host hawaiite contains subrounded xenoliths that range in size from 1 to 10 cm and show protogranular textures. Both Cr-diopside-bearing and Al-augite-bearing xenoliths are represented. The Cr-diopside-bearing xenolith suite consists of spinel lherzolite (64%), dunite (12%), websterite (12%), harzburgite (9%), and olivine websterite (3%). Banding and veining on a centimetre scale are present in four xenoliths. Partial melting at the grain boundaries of clinopyroxene is common and may be due to natural partial melting in the upper mantle, heating by the host magma during transport, or decompression during ascent.Microprobe analyses of the constituent minerals show that most of the xenoliths are well equilibrated. Olivine is Fo89 to Fo92, orthopyroxene is En90, and Cr diopside is Wo47En48Fs5. More Fe-rich pyroxene compositions are present in some of the websterite xenoliths. The Mg/(Mg + Fe2+) and Cr/(Cr + Al + Fe3+) ratios in spinel are uniform in individual xenoliths, but they vary from xenolith to xenolith. Equilibration temperatures for the xenoliths are 860–980 °C using the Wells geothermometer. The depth of equilibration estimated for the xenoliths using geophysical and phase equilibrium constraints is 30–40 km.


2021 ◽  
Author(s):  
Aleksei Kruk ◽  
Alexander Sokol

<p>We study the reaction of garnet lherzolite with carbonatitic melt rich in molecular CO<sub>2</sub> and/or H<sub>2</sub>O in experiments at 5.5 GPa and 1200-1450°C. The experimental results show that carbonation of olivine with formation of orthopyroxene and magnesite can buffer the CO<sub>2</sub> contents in the melt, which impedes immediate separation of CO<sub>2</sub> fluid from melt equilibrated with the peridotite source. The solubility of molecular CO<sub>2</sub> in melt decreases from 20-25 wt.% at 4.5-6.8 wt.% SiO<sub>2</sub> typical of carbonatite to 7-12 wt.% in more silicic kimberlite-like melts with 26-32 wt.% SiO<sub>2</sub>. Interaction of garnet lherzolite with carbonatitic melt (2:1) in the presence of 2-3 wt.% H<sub>2</sub>O and 9-13 wt.% molecular CO<sub>2</sub> at 1200-1450°С yields low SiO<sub>2</sub> (<10 wt.%) alkali‐carbonatite melts, which shows multiphase saturation with magnesite-bearing garnet harzburgite. Thus, carbonatitic melts rich in volatiles can originate in a harzburgite source at moderate temperatures common to continental lithospheric mantle (CLM).</p><p>Having separated from the source, carbonatitic magma enriched in molecular CO<sub>2</sub> and H<sub>2</sub>O can rapidly acquire a kimberlitic composition with >25 wt.% SiO<sub>2 </sub>by dissolution and carbonation of entrapped peridotite. Furthermore, interaction of garnet lherzolite with carbonatitic melt rich in K, CO<sub>2</sub>, and H<sub>2</sub>O at 1350°С produces immiscible kimberlite-like carbonate-silicate and K-rich silicate melts. Quenched silicate melt develops lamelli of foam-like vesicular glass. Differentiation of immiscible melts early during ascent may equalize the compositions of kimberlite magmas generated in different CLM sources. The fluid phase can release explosively from ascending magma at lower pressures as a result of SiO<sub>2</sub> increase which reduces the solubility of CO<sub>2</sub> due to decarbonation reaction of magnesite and orthopyroxene.</p><p>The research was performed by a grant of the Russian Science Foundation (19-77-10023).</p>


Sign in / Sign up

Export Citation Format

Share Document