TFIIB and the regulation of transcription by RNA polymerase II

Chromosoma ◽  
2007 ◽  
Vol 116 (5) ◽  
pp. 417-429 ◽  
Author(s):  
Wensheng Deng ◽  
Stefan G. E. Roberts
2012 ◽  
Vol 13 (11) ◽  
pp. R106 ◽  
Author(s):  
Mariona Nadal-Ribelles ◽  
Núria Conde ◽  
Oscar Flores ◽  
Juan González-Vallinas ◽  
Eduardo Eyras ◽  
...  

2007 ◽  
Vol 27 (5) ◽  
pp. 1844-1858 ◽  
Author(s):  
Yumiko Tokusumi ◽  
Ying Ma ◽  
Xianzhou Song ◽  
Raymond H. Jacobson ◽  
Shinako Takada

ABSTRACT The core promoter is a critical DNA element required for accurate transcription and regulation of transcription. Several core promoter elements have been previously identified in eukaryotes, but those cannot account for transcription from most RNA polymerase II-transcribed genes. Additional, as-yet-unidentified core promoter elements must be present in eukaryotic genomes. From extensive analyses of the hepatitis B virus X gene promoter, here we identify a new core promoter element, XCPE1 (the X gene core promoter element 1), that drives RNA polymerase II transcription. XCPE1 is located between nucleotides −8 and +2 relative to the transcriptional start site (+1) and has a consensus sequence of G/A/T-G/C-G-T/C-G-G-G/A-A-G/C+1-A/C. XCPE1 shows fairly weak transcriptional activity alone but exerts significant, specific promoter activity when accompanied by activator-binding sites. XCPE1 is also found in the core promoter regions of about 1% of human genes, particularly in poorly characterized TATA-less genes. Our in vitro transcription studies suggest that the XCPE1-driven transcription can be highly active in the absence of TFIID because it can utilize either free TBP or the complete TFIID complex. Our findings suggest the possibility of the existence of a TAF1 (TFIID)-independent transcriptional initiation mechanism that may be used by a category of TATA-less promoters in higher eukaryotes.


1999 ◽  
Vol 77 (4) ◽  
pp. 398
Author(s):  
Michael S Kobor ◽  
Jacques Archambault ◽  
David Jansma ◽  
William Lester ◽  
Lisa Simon ◽  
...  

2017 ◽  
Author(s):  
Pouria Dasmeh

AbstractIn heterogametic organisms, expression of unequal number of X chromosomes in males and females is balanced by a process called dosage compensation. In Drosophila and mammals, dosage compensation involves nearly two-fold up-regulation of the X chromosome mediated by dosage compensation complex (DCC). Experimental studies on the role of DCC on RNA polymerase II (Pol II) transcription in mammals disclosed a non-linear relationship between Pol II densities at different transcription steps and mRNA expression. An ~20-30% increase in Pol II densities corresponds to a rough 200% increase in mRNA expression and two-fold up-regulation. Here, using a simple kinetic model of Pol II transcription calibrated by in vivo measured rate constants of different transcription steps in mammalian cells, we demonstrate how this non-linearity can be explained by multi-step transcriptional regulation. Moreover, we show how multi-step enhancement of Pol II transcription can increase mRNA production while leaving Pol II densities unaffected. Our theoretical analysis not only recapitulates experimentally observed Pol II densities upon two-fold up-regulation but also points to a limitation of inferences based on Pol II profiles from chromatin immunoprecipitation sequencing (ChIP-seq) or global run-on assays.


2020 ◽  
Author(s):  
Megan A. Bandeira ◽  
Max E. Boeck

AbstractHistone modifications play an essential role in regulating recruitment of RNA polymerase II and through this regulation of transcription itself. Which modifications are essential for regulating the transcription of non-coding RNA (ncRNA) species and how these patterns differ between the different types of ncRNA remains less studied compared to mRNA. We performed a principal component analysis (PCA) of histone modifications patterns surrounding the transcription start site (TSS) of ncRNA in an attempt to understand how histone modifications predict polymerase recruitment and transcription of ncRNA in early C. elegans development We found that our first PCA axis was a better predictor of polymerase recruitment and expression than any single histone modification for ncRNA and miRNA. This indicates an integrated analysis of many histone modifications is essential for predicting expression based on histone modifications and that each ncRNA species have unique regulation of RNA polymerase recruitment through histone modifications.


Science ◽  
1991 ◽  
Vol 254 (5029) ◽  
pp. 238-245
Author(s):  
PJ Laybourn ◽  
JT Kadonaga

The relation between chromatin structure and transcriptional activity was examined by in vitro transcription analysis of chromatin reconstituted in the absence or presence of histone H1. To maintain well-defined template DNA, purified components were used in the reconstitution of chromatin. Reconstitution of nucleosomal cores to an average density of 1 nucleosome per 200 base pairs of DNA resulted in a mild reduction of basal RNA polymerase II transcription to 25 to 50 percent of that obtained with naked DNA templates. This nucleosome-mediated repression was due to nucleosomal cores located at the RNA start site and could not be counteracted by the sequence-specific transcription activators Sp1 and GAL4-VP16. When H1 was incorporated into the chromatin at 0.5 to 1.0 molecule per nucleosome (200 base pairs of DNA), RNA synthesis was reduced to 1 to 4 percent of that observed with chromatin containing only nucleosomal cores, and this H1-mediated repression could be counteracted by the addition of Sp1 or GAL4-VP16 (antirepression). With naked DNA templates, transcription was increased by a factor of 3 and 8 by Sp1 and GAL4-VP-16, respectively (true activation). With H1-repressed chromatin templates, however, the magnitude of transcriptional activation mediated by Sp1 and GAL4-VP16 was 90 and more than 200 times higher, respectively, because of the combined effects of true activation and antirepression. The data provide direct biochemical evidence that support and clarify previously proposed models in which there is depletion or reconfiguration of nucleosomal cores and histone H1 at the promoter regions of active genes.


Sign in / Sign up

Export Citation Format

Share Document