Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II

Science ◽  
1991 ◽  
Vol 254 (5029) ◽  
pp. 238-245
Author(s):  
PJ Laybourn ◽  
JT Kadonaga

The relation between chromatin structure and transcriptional activity was examined by in vitro transcription analysis of chromatin reconstituted in the absence or presence of histone H1. To maintain well-defined template DNA, purified components were used in the reconstitution of chromatin. Reconstitution of nucleosomal cores to an average density of 1 nucleosome per 200 base pairs of DNA resulted in a mild reduction of basal RNA polymerase II transcription to 25 to 50 percent of that obtained with naked DNA templates. This nucleosome-mediated repression was due to nucleosomal cores located at the RNA start site and could not be counteracted by the sequence-specific transcription activators Sp1 and GAL4-VP16. When H1 was incorporated into the chromatin at 0.5 to 1.0 molecule per nucleosome (200 base pairs of DNA), RNA synthesis was reduced to 1 to 4 percent of that observed with chromatin containing only nucleosomal cores, and this H1-mediated repression could be counteracted by the addition of Sp1 or GAL4-VP16 (antirepression). With naked DNA templates, transcription was increased by a factor of 3 and 8 by Sp1 and GAL4-VP-16, respectively (true activation). With H1-repressed chromatin templates, however, the magnitude of transcriptional activation mediated by Sp1 and GAL4-VP16 was 90 and more than 200 times higher, respectively, because of the combined effects of true activation and antirepression. The data provide direct biochemical evidence that support and clarify previously proposed models in which there is depletion or reconfiguration of nucleosomal cores and histone H1 at the promoter regions of active genes.

1989 ◽  
Vol 9 (12) ◽  
pp. 5573-5584 ◽  
Author(s):  
A Shimamura ◽  
M Sapp ◽  
A Rodriguez-Campos ◽  
A Worcel

We have previously shown that transcription from a Xenopus 5S rRNA gene assembled into chromatin in vitro can be repressed in the absence of histone H1 at high nucleosome densities (one nucleosome per 160 base pairs of DNA) (A. Shimamura, D. Tremethick, and A. Worcel, Mol. Cell. Biol. 8:4257-4269, 1988). We report here that transcriptional repression may also be achieved at lower nucleosome densities (one nucleosome per 215 base pairs of DNA) when histone H1 is present. Removal of histone H1 from the minichromosomes with Biorex under conditions in which no nucleosome disruption was observed led to transcriptional activation. Transcriptional repression could be restored by adding histone H1 back to the H1-depleted minichromosomes. The levels of histone H1 that repressed the H1-depleted minichromosomes failed to repress transcription from free DNA templates present in trans. The assembly of transcription complexes onto the H1-depleted minichromosomes protected the 5S RNA gene from inactivation by histone H1.


1990 ◽  
Vol 10 (8) ◽  
pp. 3926-3933 ◽  
Author(s):  
B Corthésy ◽  
P Léonnard ◽  
W Wahli

The Xenopus laevis vitellogenin B1 promoter was assembled into nucleosomes in an oocyte extract. Subsequent RNA polymerase II-dependent transcription from these DNA templates fully reconstituted in chromatin in a HeLa nuclear extract was increased 50-fold compared with naked DNA. Remarkably, under specific conditions, production of a high level of transcripts occurred at very low DNA (1 ng/microliter) and HeLa nuclear protein (1.6 micrograms/microliters) concentrations. When partially reconstituted templates were used, transcription efficiency was intermediate between that of fully reconstituted and naked DNA. These results implicate chromatin in the process of the transcriptional activation observed. Depletion from the oocyte assembly extract of an NF-I-like factor which binds in the promoter region upstream of the TATA box (-114 to -101) or deletion from the promoter of the region interacting with this factor reduced the transcriptional efficiency of the assembled templates by a factor of 5, but transcription of these templates was still 10 times higher than that of naked DNA. Together, these results indicate that the NF-I-like factor participates in the very efficient transcriptional potentiation of the vitellogenin B1 promoter which occurs during nucleosome assembly.


1990 ◽  
Vol 10 (8) ◽  
pp. 3926-3933
Author(s):  
B Corthésy ◽  
P Léonnard ◽  
W Wahli

The Xenopus laevis vitellogenin B1 promoter was assembled into nucleosomes in an oocyte extract. Subsequent RNA polymerase II-dependent transcription from these DNA templates fully reconstituted in chromatin in a HeLa nuclear extract was increased 50-fold compared with naked DNA. Remarkably, under specific conditions, production of a high level of transcripts occurred at very low DNA (1 ng/microliter) and HeLa nuclear protein (1.6 micrograms/microliters) concentrations. When partially reconstituted templates were used, transcription efficiency was intermediate between that of fully reconstituted and naked DNA. These results implicate chromatin in the process of the transcriptional activation observed. Depletion from the oocyte assembly extract of an NF-I-like factor which binds in the promoter region upstream of the TATA box (-114 to -101) or deletion from the promoter of the region interacting with this factor reduced the transcriptional efficiency of the assembled templates by a factor of 5, but transcription of these templates was still 10 times higher than that of naked DNA. Together, these results indicate that the NF-I-like factor participates in the very efficient transcriptional potentiation of the vitellogenin B1 promoter which occurs during nucleosome assembly.


1989 ◽  
Vol 9 (12) ◽  
pp. 5573-5584
Author(s):  
A Shimamura ◽  
M Sapp ◽  
A Rodriguez-Campos ◽  
A Worcel

We have previously shown that transcription from a Xenopus 5S rRNA gene assembled into chromatin in vitro can be repressed in the absence of histone H1 at high nucleosome densities (one nucleosome per 160 base pairs of DNA) (A. Shimamura, D. Tremethick, and A. Worcel, Mol. Cell. Biol. 8:4257-4269, 1988). We report here that transcriptional repression may also be achieved at lower nucleosome densities (one nucleosome per 215 base pairs of DNA) when histone H1 is present. Removal of histone H1 from the minichromosomes with Biorex under conditions in which no nucleosome disruption was observed led to transcriptional activation. Transcriptional repression could be restored by adding histone H1 back to the H1-depleted minichromosomes. The levels of histone H1 that repressed the H1-depleted minichromosomes failed to repress transcription from free DNA templates present in trans. The assembly of transcription complexes onto the H1-depleted minichromosomes protected the 5S RNA gene from inactivation by histone H1.


1994 ◽  
Vol 14 (6) ◽  
pp. 3927-3937
Author(s):  
M Kretzschmar ◽  
G Stelzer ◽  
R G Roeder ◽  
M Meisterernst

We have isolated from a crude Hela cell cofactor fraction (USA) a novel positive cofactor that cooperates with the general transcription machinery to effect efficient stimulation of transcription by GAL4-AH, a derivative of the Saccharomyces cerevisiae regulatory factor GAL4. PC2 was shown to be a 500-kDa protein complex and to be functionally and biochemically distinct from native TFIID and previously identified cofactors. In the presence of native TFIID and other general factors, PC2 was necessary and sufficient for activation by GAL4-AH. Cofactor function was specific for transcriptional activation domains of GAL4-AH. The repressor histone H1 further potentiated but was not required for activation of transcription by GAL4-AH. On the basis of the observation that PC2 exerts entirely positive effects on transcription, we propose a model in which PC2 increases the activity of the preinitiation complex in the presence of an activator, thereby establishing a specific pathway during activation of RNA polymerase II.


2020 ◽  
Vol 295 (15) ◽  
pp. 4782-4795 ◽  
Author(s):  
Philipp E. Merkl ◽  
Michael Pilsl ◽  
Tobias Fremter ◽  
Katrin Schwank ◽  
Christoph Engel ◽  
...  

RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I–associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used in vitro transcription assays to study purified WT and mutant Pol I variants from the yeast Saccharomyces cerevisiae and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I–specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.


2001 ◽  
Vol 21 (8) ◽  
pp. 2736-2742 ◽  
Author(s):  
Joseph V. Geisberg ◽  
Frank C. Holstege ◽  
Richard A. Young ◽  
Kevin Struhl

ABSTRACT NC2 (Dr1-Drap1 or Bur6-Ydr1) has been characterized in vitro as a general negative regulator of RNA polymerase II (Pol II) transcription that interacts with TATA-binding protein (TBP) and inhibits its function. Here, we show that NC2 associates with promoters in vivo in a manner that correlates with transcriptional activity and with occupancy by basal transcription factors. NC2 rapidly associates with promoters in response to transcriptional activation, and it remains associated under conditions in which transcription is blocked after assembly of the Pol II preinitiation complex. NC2 positively and negatively affects approximately 17% of Saccharomyces cerevisiaegenes in a pattern that resembles the response to general environmental stress. Relative to TBP, NC2 occupancy is high at promoters where NC2 is positively required for normal levels of transcription. Thus, NC2 is associated with the Pol II preinitiation complex, and it can play a direct and positive role at certain promoters in vivo.


2006 ◽  
Vol 27 (3) ◽  
pp. 937-948 ◽  
Author(s):  
Brenden Rickards ◽  
S. J. Flint ◽  
Michael D. Cole ◽  
Gary LeRoy

ABSTRACT Eukaryotic genomes are packaged with histones and accessory proteins in the form of chromatin. RNA polymerases and their accessory proteins are sufficient for transcription of naked DNA, but not of chromatin, templates in vitro. In this study, we purified and identified nucleolin as a protein that allows RNA polymerase II to transcribe nucleosomal templates in vitro. As immunofluorescence confirmed that nucleolin localizes primarily to nucleoli with RNA polymerase I, we demonstrated that nucleolin allows RNA polymerase I transcription of chromatin templates in vitro. The results of chromatin immunoprecipitation experiments established that nucleolin is associated with chromatin containing rRNA genes transcribed by RNA polymerase I but not with genes transcribed by RNA polymerase II or III. Knockdown of nucleolin by RNA interference resulted in specific inhibition of RNA polymerase I transcription. We therefore propose that an important function of nucleolin is to permit RNA polymerase I to transcribe nucleolar chromatin.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. SCI-21-SCI-21
Author(s):  
Steven Henikoff

Abstract The protein complexes that package our genomes must be mobilized for active processes to occur, including replication and transcription, but until recently we have only had a static, low resolution view of the "epigenome". Genomes are packaged into nucleosomes, octamers of four core histones wrapped by 147 base pairs of DNA. Nucleosomes present obstacles to transcription, which over genes is the RNA Polymerase II (RNAPII) complex, and one current challenge is to understand what happens to a nucleosome when RNAPII transcribes through the DNA that it occupies. We study this process by developing methods for following nucleosomes as they are evicted and replaced. Among the factors that we have implicated in the process is torsional stress, which we can now measure genome-wide. RNAPII movement can unwrap nucleosomes and thus destabilize them, causing them to be occasionally evicted and replaced. Interestingly, we find that destabilization of nucleosomes during transcription is enhanced by anthracycline compounds, widely used chemotherapeutic drugs that intercalate between DNA base pairs, thus suggesting a new mechanism for cell killing during chemotherapy. We are also interested in what happens to RNAPII during its encounter with a nucleosomes. In vitro, RNAPII cannot transcribe completely through a nucleosome, but rather stalls as it tries to unwrap the DNA from around the core. We have been studying this process in vivo, and have developed a simple method for precisely mapping RNAPII genome-wide. We have used this method to show exactly where RNAPII stalls as it unwraps a nucleosome in vivo, surprisingly in a different place in vivo from where it stalls in vitro. We also have discovered that a variant histone, H2A.Z, which is found in essentially all eukaryotes, helps to reduce the nucleosome barrier to transcription, and in this way may modulate transcription. Other protein components of the epigenome involved in dynamic processes are nucleosome remodelers, which use the energy of ATP to slide or even evict nucleosomes from DNA. Some remodelers help RNAPII get started and others help it overcome the nucleosome barrier to transcription, and by mapping them at base-pair resolution, we can gain insight into how they act. We have also applied our high-resolution mapping tools to transcription factors, which bind DNA at specific sites to regulate transcription and other processes. Our ability to achieve high spatial and temporal resolution mapping of the binding and action of nucleosomes, transcription factors, remodelers and RNAPII provides us with a detailed picture of epigenome dynamics. By using these tools we are beginning to understand how DNA sequence and conformation are recognized for regulation of transcription and other epigenomic processes. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 203 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Nikhil Raghuram ◽  
Hilmar Strickfaden ◽  
Darin McDonald ◽  
Kylie Williams ◽  
He Fang ◽  
...  

Histone H1 plays a crucial role in stabilizing higher order chromatin structure. Transcriptional activation, DNA replication, and chromosome condensation all require changes in chromatin structure and are correlated with the phosphorylation of histone H1. In this study, we describe a novel interaction between Pin1, a phosphorylation-specific prolyl isomerase, and phosphorylated histone H1. A sub-stoichiometric amount of Pin1 stimulated the dephosphorylation of H1 in vitro and modulated the structure of the C-terminal domain of H1 in a phosphorylation-dependent manner. Depletion of Pin1 destabilized H1 binding to chromatin only when Pin1 binding sites on H1 were present. Pin1 recruitment and localized histone H1 phosphorylation were associated with transcriptional activation independent of RNA polymerase II. We thus identify a novel form of histone H1 regulation through phosphorylation-dependent proline isomerization, which has consequences on overall H1 phosphorylation levels and the stability of H1 binding to chromatin.


Sign in / Sign up

Export Citation Format

Share Document