scholarly journals Olfactory impairment in autoimmune encephalitis: another piece of the puzzle

Author(s):  
Alessandra Morano ◽  
Emanuele Cerulli Irelli ◽  
Martina Fanella ◽  
Biagio Orlando ◽  
Enrico Michele Salamone ◽  
...  
2021 ◽  
Vol 429 ◽  
pp. 118826
Author(s):  
Alessandra Morano ◽  
Emanuele Cerulli Irelli ◽  
Martina Fanella ◽  
Biagio Orlando ◽  
Enrico Salamone ◽  
...  

2020 ◽  
Vol 58 (10) ◽  
pp. 975-981
Author(s):  
Thomas Frieling ◽  
Christian Kreysel ◽  
Michael Blank ◽  
Dorothee Müller ◽  
Ilka Melchior ◽  
...  

Abstract Background Neurological autoimmune disorders (NAD) are caused by autoimmune inflammation triggered by specific antibody subtypes. NAD may disturb the gut-brain axis at several levels including brain, spinal cord, peripheral, or enteric nervous system. Case report We present a case with antinuclear neuronal Hu (ANNA-1)- and antiglial nuclear (SOX-1) autoimmune antibody-positive limbic encephalitis and significant gastrointestinal dysmotility consisting of achalasia type II, gastroparesis, altered small intestinal interdigestive motility, and severe slow transit constipation. The autoantibodies of the patient’s serum labeled enteric neurons and interstitial cells of Cajal but no other cells in the gut wall. Achalasia was treated successfully by pneumatic cardia dilation and gastrointestinal dysmotility successfully with prucalopride. Conclusion NAD may disturb gastrointestinal motility by altering various levels of the gut-brain axis.


Epilepsia ◽  
2021 ◽  
Vol 62 (2) ◽  
pp. 397-407
Author(s):  
Anusha K. Yeshokumar ◽  
Arielle Coughlin ◽  
Jarrett Fastman ◽  
Kendall Psaila ◽  
Michael Harmon ◽  
...  

Author(s):  
Le-Minh Dao ◽  
Marie-Luise Machule ◽  
Petra Bacher ◽  
Julius Hoffmann ◽  
Lam-Thanh Ly ◽  
...  

AbstractAnti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis is the most common autoimmune encephalitis with psychosis, amnesia, seizures and dyskinesias. The disease is mediated by pathogenic autoantibodies against the NR1 subunit that disrupt NMDAR function. Antibody infusion into mouse brains can recapitulate encephalitis symptoms, while active immunization resulted also in strong T cell infiltration into the hippocampus. However, whether T cells react against NMDAR and their specific contribution to disease development are poorly understood. Here we characterized the ex vivo frequency and phenotype of circulating CD4+ T helper (TH) cells reactive to NR1 protein using antigen-reactive T cell enrichment (ARTE) in 24 patients with NMDAR encephalitis, 13 patients with LGI1 encephalitis and 51 matched controls. Unexpectedly, patients with NMDAR encephalitis had lower frequencies of CD154-expressing NR1-reactive TH cells than healthy controls and produced significantly less inflammatory cytokines. No difference was seen in T cells reactive to the synaptic target LGI1 (Leucine-rich glioma-inactivated 1), ubiquitous Candida antigens or neoantigens, suggesting that the findings are disease-specific and not related to therapeutic immunosuppression. Also, patients with LGI1 encephalitis showed unaltered numbers of LGI1 antigen-reactive T cells. The data reveal disease-specific functional alterations of circulating NMDAR-reactive TH cells in patients with NMDAR encephalitis and challenge the idea that increased pro-inflammatory NMDAR-reactive T cells contribute to disease pathogenesis.


2021 ◽  
Vol 13 ◽  
pp. 100236
Author(s):  
Vaibhav Seth ◽  
Suman Kushwaha ◽  
Ritu Verma ◽  
Priyankkumar Mukeshbhai Patel ◽  
R Kiran Gowda ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5989
Author(s):  
Bilal Ahmad ◽  
Maria Batool ◽  
Moon Suk Kim ◽  
Sangdun Choi

Toll-like receptor (TLR) signaling plays a critical role in the induction and progression of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematous, experimental autoimmune encephalitis, type 1 diabetes mellitus and neurodegenerative diseases. Deciphering antigen recognition by antibodies provides insights and defines the mechanism of action into the progression of immune responses. Multiple strategies, including phage display and hybridoma technologies, have been used to enhance the affinity of antibodies for their respective epitopes. Here, we investigate the TLR4 antibody-binding epitope by computational-driven approach. We demonstrate that three important residues, i.e., Y328, N329, and K349 of TLR4 antibody binding epitope identified upon in silico mutagenesis, affect not only the interaction and binding affinity of antibody but also influence the structural integrity of TLR4. Furthermore, we predict a novel epitope at the TLR4-MD2 interface which can be targeted and explored for therapeutic antibodies and small molecules. This technique provides an in-depth insight into antibody–antigen interactions at the resolution and will be beneficial for the development of new monoclonal antibodies. Computational techniques, if coupled with experimental methods, will shorten the duration of rational design and development of antibody therapeutics.


Sign in / Sign up

Export Citation Format

Share Document