scholarly journals Distribution of extracellular matrix proteins type I collagen, type IV collagen, fibronectin, and laminin in mouse folliculogenesis

2006 ◽  
Vol 126 (5) ◽  
pp. 583-592 ◽  
Author(s):  
Courtney B. Berkholtz ◽  
Bonnie E. Lai ◽  
Teresa K. Woodruff ◽  
Lonnie D. Shea
1999 ◽  
Vol 111 (1) ◽  
pp. 171-177
Author(s):  
Toshihiko Hayashi ◽  
Kazunori Mizuno ◽  
Motohiro Hirose ◽  
Koichi Nakazato ◽  
Eijiro Adachi ◽  
...  

1985 ◽  
Vol 100 (6) ◽  
pp. 1941-1947 ◽  
Author(s):  
M K Skinner ◽  
P S Tung ◽  
I B Fritz

We examined the synthesis and deposition of extracellular matrix (ECM) components in cultures of Sertoli cells and testicular peritubular cells maintained alone or in contact with each other. Levels of soluble ECM components produced by populations of isolated Sertoli cells and testicular peritubular cells were determined quantitatively by competitive enzyme-linked immunoabsorbent assays, using antibodies shown to react specifically with Type I collagen, Type IV collagen, laminin, or fibronectin. Peritubular cells in monoculture released into the medium fibronectin (432 to 560 ng/microgram cell DNA per 48 h), Type I collagen (223 to 276 ng/microgram cell DNA per 48 h), and Type IV collagen (350 to 436 ng/microgram cell DNA per 48 h) during the initial six days of culture in serum-free medium. In contrast, Sertoli cells in monoculture released into the medium Type IV collagen (322 to 419 ng/microgram cell DNA per 48 h) but did not form detectable amounts of Type I collagen or fibronectin during the initial six days of culture. Neither cell type produced detectable quantities of soluble laminin. Immunocytochemical localization investigations demonstrated that peritubular cells in monoculture were positive for fibronectin, Type I collagen, and Type IV collagen but negative for laminin. In all monocultures most of the ECM components were intracellular, with scant deposition as extracellular fibrils. Sertoli cells were positive immunocytochemically for Type IV collagen and laminin but negative for fibronectin and Type I collagen. Co-cultures of peritubular cells and Sertoli cells resulted in interactions that quantitatively altered levels of soluble ECM components present in the medium. This was correlated with an increased deposition of ECM components in extracellular fibrils. The data correlated with an increased deposition of ECM components in extracellular fibrils. The data presented here we interpret to indicate that the two cell types in co-culture act cooperatively in the formation and deposition of ECM components. Results are discussed with respect to the nature of interactions between mesenchymal peritubular cell precursors and adjacent epithelial Sertoli cell precursors in the formation of the basal lamina of the seminiferous tubule.


ChemInform ◽  
2010 ◽  
Vol 30 (30) ◽  
pp. no-no
Author(s):  
Toshihiko Hayashi ◽  
Kazunori Mizuno ◽  
Motohiro Hirose ◽  
Koichi Nakazato ◽  
Eijiro Adachi ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
pp. 103-110
Author(s):  
Braca Kundalic ◽  
Sladjana Ugrenovic ◽  
Ivan Jovanovic ◽  
Vladimir Petrovic ◽  
Aleksandar Petrovic ◽  
...  

The aim of this study was to analyze the expression of extracellular matrix (ECM) proteins in human endoneurium during aging. We harvested 15 cadaveric sural nerves, distributed in 3 age groups (I: 25-44, II: 45-64, III: 65-86 years old). Histological sections were stained immunohistochemically for the presence of collagen type I, type IV and laminin, and the ImageJ processing program was used in morphometrical analysis to determine the percentages of these endoneurial proteins. In two younger groups, the endoneurial matrix of the sural nerve was composed from about equal proportions of these proteins, which may be considered a favorable microenvironment for the regeneration of nerve fibers. Linear regression analysis showed a significant increase in endoneurial collagen type IV with age, while collagen type I and laminin significantly decreased during the aging process. In cases older than 65 years, remodeling of the endoneurial matrix was observed to be significantly higher for the presence of collagen type IV, and lower for the expression of collagen type I and laminin. This age-related imbalance of ECM proteins could represent a disadvantageous microenvironment for nerve fiber regeneration in older adults. Our findings contribute to the development of therapeutic approaches for peripheral nerve regeneration.


1990 ◽  
Vol 96 (1) ◽  
pp. 159-169
Author(s):  
A.E. Canfield ◽  
T.D. Allen ◽  
M.E. Grant ◽  
S.L. Schor ◽  
A.M. Schor

Bovine retinal pericytes plated on a two-dimensional substratum display a characteristic stellate morphology. In post-confluent cultures these cells aggregate spontaneously to form multicellular nodules. The same cells plated within a three-dimensional collagen matrix display an elongated sprouting morphology. Sprouting pericytes may be embedded within a gel either as individual cells or as multicellular aggregates. We have compared the nature of the matrix proteins synthesised by pericytes displaying these different phenotypes. Stellate pericytes cultured on plastic dishes synthesised predominantly type I collagen, some type III collagen and only traces of type IV collagen. The same collagen types were secreted when nodules had formed in postconfluent cultures on plastic, and by sprouting cells plated as single cells within the collagen gel. By contrast, sprouting pericytes plated as aggregates within the collagen gel secreted increased levels of type IV collagen and reduced amounts of type I collagen. Fibronectin was synthesized by pericytes under all experimental conditions examined; thrombospondin was produced in relatively large amounts by cells grown on plastic dishes, whereas only trace amounts could be detected in the medium when the cells were cultured within a collagen gel matrix. Transmission electron microscopy revealed that pericyte aggregates within a collagen gel contained cells in close apposition surrounded by a dense extracellular matrix. In contrast, cells in the centre of a nodule on plastic appeared to be separated from each other by loose extracellular material. These results suggest that the morphological and biosynthetic phenotypes of retinal pericytes are modulated by cell-matrix and/or cell-cell interactions.


1990 ◽  
Vol 10 (3) ◽  
pp. 1239-1243 ◽  
Author(s):  
J M Caron

Transcriptional activity of the albumin gene was induced in primary cultures of hepatocytes by adding dilute concentrations of basement membrane-like proteins derived from the EHS mouse sarcoma tumor to established type I collagen cultures. By immunofluorescence microscopy with antialbumin antibody, the population of cells responded uniformly to dilute EHS. Of the three major components of EHS, purified laminin was as effective as unfractionated EHS at inducing an increase in albumin mRNA levels and albumin secretion; type IV collagen and heparan sulfate proteoglycan were ineffective.


Sign in / Sign up

Export Citation Format

Share Document