Thermal instability of a porous medium with relaxation and inertia in the presence of Hall effects

2000 ◽  
Vol 70 (8-9) ◽  
pp. 649-658 ◽  
Author(s):  
Sunil ◽  
P. Singh
1994 ◽  
Vol 49 (4-5) ◽  
pp. 547-551 ◽  
Author(s):  
R. C. Sharma ◽  
V. K. Bhardwaj

Abstract The thermal instability of a plasma in a porous medium in the presence of a finite Larmor radius (FLR) and Hall effects is considered. Oscillatory m odes due to the presence of a magnetic field (and hence the presence of FLR and Hall effects) are introduced. For stationary convection, the FLR may have a stabilizing or destabilizing effect, but a completely stabilizing one for a certain wave-number range. Similarly, the Hall currents may have a stabilizing or destabilizing effect but a completely stabilizing one for the same wave-number range under certain condition, whereas the medium permeability always has a destabilizing effect for stationary convection.


GIS Business ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 383-394
Author(s):  
K. Shalini ◽  
K.Rajasekhar

In this paper, the effect of Slip and Hall effects on the flow of Hyperbolic tangent fluid through a porous medium in a planar channel with peristalsis under the assumption of long wavelength is investigated. A Closed form solutions are obtained for axial velocity and pressure gradient by employing perturbation technique. The effects of various emerging parameters on the pressure gradient, time averaged volume flow rate and frictional force are discussed with the aid of graphs.


1987 ◽  
Vol 109 (3) ◽  
pp. 677-682 ◽  
Author(s):  
G. Pillatsis ◽  
M. E. Taslim ◽  
U. Narusawa

A linear stability analysis is performed for a horizontal Darcy porous layer of depth 2dm sandwiched between two fluid layers of depth d (each) with the top and bottom boundaries being dynamically free and kept at fixed temperatures. The Beavers–Joseph condition is employed as one of the interfacial boundary conditions between the fluid and the porous layer. The critical Rayleigh number and the horizontal wave number for the onset of convective motion depend on the following four nondimensional parameters: dˆ ( = dm/d, the depth ratio), δ ( = K/dm with K being the permeability of the porous medium), α (the proportionality constant in the Beavers–Joseph condition), and k/km (the thermal conductivity ratio). In order to analyze the effect of these parameters on the stability condition, a set of numerical solutions is obtained in terms of a convergent series for the respective layers, for the case in which the thickness of the porous layer is much greater than that of the fluid layer. A comparison of this study with the previously obtained exact solution for the case of constant heat flux boundaries is made to illustrate quantitative effects of the interfacial and the top/bottom boundaries on the thermal instability of a combined system of porous and fluid layers.


Sign in / Sign up

Export Citation Format

Share Document