Impact of aortic root size on left ventricular afterload and stroke volume

2016 ◽  
Vol 116 (7) ◽  
pp. 1355-1365 ◽  
Author(s):  
Anders Sahlén ◽  
Nadira Hamid ◽  
Mohammed Rizwan Amanullah ◽  
Jiang Ming Fam ◽  
Khung Keong Yeo ◽  
...  
2012 ◽  
Vol 302 (6) ◽  
pp. H1340-H1346 ◽  
Author(s):  
Shigeki Shibata ◽  
Benjamin D. Levine

Arteriosclerosis with aging leads to central arterial stiffening in humans, which could be a prime cause for increased cardiac afterload in the elderly. The purpose of the present study was to assess the effects of 1 yr of progressive exercise training on central aortic compliance and left ventricular afterload in sedentary healthy elderly volunteers. Ten healthy sedentary seniors and 11 Masters athletes (>65 yr) were recruited. The sedentary seniors underwent 1 yr of progressive exercise training so that at the end of the year, they were exercising ∼200 min/wk. Central aortic compliance was assessed by the Modelflow aortic age, which reflects the intrinsic structural components of aortic compliance. Cardiac afterload was assessed by effective arterial elastance (Ea) with its contributors of peripheral vascular resistance (PVR) and systemic arterial compliance (SAC). After exercise training, Ea, PVR, and SAC were improved in sedentary seniors and became comparable with those of Masters athletes although the Modelflow aortic age was not changed. Moreover, after exercise training, when stroke volume was restored with lower body negative pressure back to pretraining levels, the exercise training-induced improvements in Ea, PVR, and SAC were eliminated. Aortic stiffening with aging was not improved even after 1 yr of progressive endurance exercise training in the previously sedentary elderly, while left ventricular afterload was reduced. This reduced afterload after exercise training appeared to be attributable to cardiovascular functional modulation to an increase in stroke volume rather than to intrinsic structural changes in the arterial wall.


2011 ◽  
pp. 42-47
Author(s):  
James R. Munis

We've already looked at 2 types of pressure that affect physiology (atmospheric and hydrostatic pressure). Now let's consider the third: vascular pressures that result from mechanical events in the cardiovascular system. As you already know, cardiac output can be defined as the product of heart rate times stroke volume. Heart rate is self-explanatory. Stroke volume is determined by 3 factors—preload, afterload, and inotropy—and these determinants are in turn dependent on how the left ventricle handles pressure. In a pressure-volume loop, ‘afterload’ is represented by the pressure at the end of isovolumic contraction—just when the aortic valve opens (because the ventricular pressure is now higher than aortic root pressure). These loops not only are straightforward but are easier to construct just by thinking them through, rather than by memorization.


1993 ◽  
Vol 264 (2) ◽  
pp. H423-H432 ◽  
Author(s):  
D. E. Hansen

Electrophysiological consequences of altering ventricular load (mechanoelectrical feedback) were characterized in an isolated canine heart preparation. A computerized servo pump system controlled left ventricular volume and allowed ventricular ejection against a simulated arterial load (3-element Windkessel model). In 12 ventricles, end-diastolic volume (Ved) was held constant (end-diastolic pressure 6-12 mmHg) as arterial resistance (R) was varied (0.5-12 mmHg.s.ml-1), but afterload-dependent changes in the monophasic action potential (MAP) were not observed despite a large stroke volume effect. In contrast, when R was held constant in eight ventricles while Ved was increased from 20 to 40 ml, the plateau phase of the MAP was abbreviated, the terminal portion of phase 3 repolarization was delayed, and MAP duration measured at 20, 70, and 90% repolarization decreased (P < 0.05). In six ventricles, immediate transitions from isovolumic to ejecting mode at constant Ved did not alter MAP duration, but the magnitude of early afterdepolarizations (EADs), observed during isovolumic beats at high Ved, was reduced with resumption of ventricular ejection. As stroke volume of the initial ejecting contraction was increased by stepwise reductions of R, the magnitude of the EADs decreased progressively. Thus altering ventricular afterload does not modulate action potential duration in ventricles subjected to elevated, physiological, or even greatly reduced levels of afterload, whereas diastolic filling to high Ved does. Under conditions that lead to reduced stroke volume and high end-systolic volume, EADs are produced that are virtually abolished when ventricular ejection fraction is normalized.


1998 ◽  
Vol 86 (5) ◽  
pp. 932-938 ◽  
Author(s):  
Paul S. Pagel ◽  
Douglas A. Hettrick ◽  
Judy R. Kersten ◽  
John P. Tessmer ◽  
Dermot Lowe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document