Hypobaric hypoxia-reoxygenation diminishes band 3 protein functions in human erythrocytes

2002 ◽  
Vol 445 (3) ◽  
pp. 337-341 ◽  
Author(s):  
Gustavo González ◽  
Gloria Celedón ◽  
Mario Sandoval ◽  
Gabriela González ◽  
Verónica Ferrer ◽  
...  
Author(s):  
Rossana Morabito ◽  
Alessia Remigante ◽  
Marika Cordaro ◽  
Vincenzo Trichilo ◽  
Saverio Loddo ◽  
...  

1984 ◽  
Vol 218 (2) ◽  
pp. 295-305 ◽  
Author(s):  
R D A Lang ◽  
C Wickenden ◽  
J Wynne ◽  
J A Lucy

Human erythrocytes were fused by incubation with 0.5-2 mM-chlorpromazine hydrochloride at pH 6.8-7.6. Fusogenic preparations of chlorpromazine were cloudy suspensions of microdroplets, and below pH 6.8 chlorpromazine gave clear solutions that were inactive. Unlike control cells, the lateral mobility of the intramembranous particles of the PF-fracture face of chlorpromazine-treated cells was relatively unrestricted, since the particles were partly clustered at 37 degrees C and they exhibited extensive cold-induced clustering. Ca2+ stimulated fusion, but fusion was only very weakly inhibited by EGTA (10 mM) and by N-ethylmaleimide (50 mM); pretreatment of the cells with Tos-Lys-CH2Cl (7-amino-1-chloro-3-L-tosylamidoheptan-2-one) (7.5 mM) markedly inhibited fusion. Changes in the membrane proteins of erythrocytes fused by chlorpromazine, before and after treatment with chymotrypsin to remove band 3 protein, were investigated. The several observations made indicate that the Ca2+-insensitive component of fusion is associated with degradation of ankyrin (band 2.1 protein) to band 2.3-2.6 proteins and to smaller polypeptides by a serine proteinase that is inhibited by Tos-Lys-CH2Cl, and that the component of fusion inhibited by EGTA and N-ethylmaleimide is associated with degradation of band 3 protein to band 4.5 protein by a Ca2+-activated cysteine proteinase. Proteolysis of ankyrin appeared to be sufficient to permit the chlorpromazine-induced fusion of human erythrocytes, but fusion occurred more rapidly when band 3 protein was also degraded in the presence of Ca2+. Since other cells have structures comparable with the spectrin-actin skeleton of the erythrocyte membrane, the observations reported may be relevant to the initiation of naturally occurring fusion reactions in biomembranes. It is also suggested that, should polypeptides with fusogenic properties be produced from integral and skeletal membrane proteins by endogenous proteolysis, their formation would provide a general mechanism for the fusion of lipid bilayers in biomembrane fusion reactions.


1996 ◽  
Vol 240 (2) ◽  
pp. 394-399 ◽  
Author(s):  
Anna Maria Brunati ◽  
Luciana Bordin ◽  
Giulio Clari ◽  
Vittorio Moret

2002 ◽  
Vol 1564 (1) ◽  
pp. 214-218 ◽  
Author(s):  
Antonio Galtieri ◽  
Ester Tellone ◽  
Leonardo Romano ◽  
Francesco Misiti ◽  
Ersilia Bellocco ◽  
...  

1997 ◽  
Vol 99 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Gudrun Stoya ◽  
Eckehard Baumann ◽  
Udo Junker ◽  
Johannes Hermann ◽  
Werner Linss

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Sara Spinelli ◽  
Alessia Remigante ◽  
Silvia Dossena ◽  
Michael Pusch ◽  
Angela Marino ◽  
...  

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Rossana Morabito ◽  
Alessia Remigante ◽  
Sara Spinelli ◽  
Marika Cordaro ◽  
Silvia Dossena ◽  
...  

1993 ◽  
Vol 16 (2) ◽  
pp. 188-194 ◽  
Author(s):  
Yukio SATO ◽  
Hiroshi YAMAKOSE ◽  
Yasuo SUZUKI

Sign in / Sign up

Export Citation Format

Share Document