D‐glucose and D‐galactose affect Band 3 protein function and oxidative stress in human erythrocytes

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Rossana Morabito ◽  
Alessia Remigante ◽  
Sara Spinelli ◽  
Marika Cordaro ◽  
Silvia Dossena ◽  
...  
2002 ◽  
Vol 1564 (1) ◽  
pp. 214-218 ◽  
Author(s):  
Antonio Galtieri ◽  
Ester Tellone ◽  
Leonardo Romano ◽  
Francesco Misiti ◽  
Ersilia Bellocco ◽  
...  

2015 ◽  
Vol 36 (1) ◽  
pp. 345-357 ◽  
Author(s):  
Rossana Morabito ◽  
Giuseppe Falliti ◽  
Antonella Geraci ◽  
Giuseppa La Spada ◽  
Angela Marino

Background/Aims: Erythrocytes, continuously exposed to oxygen pressure and toxic compounds, are sensitive to oxidative stress, namely acting on integral Band 3 protein, with consequences on cell membranes deformability and anion transport efficiency. The aim of the present investigation, conducted on human erythrocytes, is to verify whether curcumin (1 or 10µM), a natural compound with proved antioxidant properties, may counteract Band 3-mediated anion transport alterations due to oxidative stress. Methods: Oxidative conditions were induced by exposure to, alternatively, either 2 mM N-ethylmaleimide (NEM) or pH-modified solutions (6.5 and 8.5). Rate constant for SO4= uptake and -SH groups estimation were measured to verify the effect of oxidative stress on anion transport efficiency and erythrocyte membranes. Results: After the exposure of erythrocytes to, alternatively, NEM or pH-modified solutions, a significant decrease in both rate constant for SO4= uptake and -SH groups was observed, which was prevented by curcumin, with a dose-dependent effect. Conclusions: Our results show that: i) the decreased efficiency of anion transport may be due to changes in Band 3 protein structure caused by cysteine -SH groups oxidation, especially after exposure to NEM and pH 6.5; ii) 10 µM Curcumin is effective in protecting erythrocytes from oxidative stress events at level of cell membrane transport.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 689
Author(s):  
Alessia Remigante ◽  
Rossana Morabito ◽  
Sara Spinelli ◽  
Vincenzo Trichilo ◽  
Saverio Loddo ◽  
...  

d-Galactose (d-Gal), when abnormally accumulated in the plasma, results in oxidative stress production, and may alter the homeostasis of erythrocytes, which are particularly exposed to oxidants driven by the blood stream. In the present investigation, the effect of d-Gal (0.1 and 10 mM, for 3 and 24 h incubation), known to induce oxidative stress, has been assayed on human erythrocytes by determining the rate constant of SO42− uptake through the anion exchanger Band 3 protein (B3p), essential to erythrocytes homeostasis. Moreover, lipid peroxidation, membrane sulfhydryl groups oxidation, glycated hemoglobin (% A1c), methemoglobin levels (% MetHb), and expression levels of B3p have been verified. Our results show that d-Gal reduces anion exchange capability of B3p, involving neither lipid peroxidation, nor oxidation of sulfhydryl membrane groups, nor MetHb formation, nor altered expression levels of B3p. d-Gal-induced %A1c, known to crosslink with B3p, could be responsible for rate of anion exchange alteration. The present findings confirm that erythrocytes are a suitable model to study the impact of high sugar concentrations on cell homeostasis; show the first in vitro effect of d-Gal on B3p, contributing to the understanding of mechanisms underlying an in vitro model of aging; demonstrate that the first impact of d-Gal on B3p is mediated by early Hb glycation, rather than by oxidative stress, which may be involved on a later stage, possibly adding more knowledge about the consequences of d-Gal accumulation.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Rossana Morabito ◽  
Alessia Remigante ◽  
Sara Spinelli ◽  
Giulia Vitale ◽  
Giuseppa Scarfì ◽  
...  

2012 ◽  
Vol 30 (5) ◽  
pp. 406-410 ◽  
Author(s):  
S. Casella ◽  
S. Ielati ◽  
D. Piccione ◽  
P. Laganà ◽  
F. Fazio ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2741 ◽  
Author(s):  
Rossana Morabito ◽  
Alessia Remigante ◽  
Angela Marino

The beneficial effect of Melatonin (Mel), recognized as an anti-inflammatory and antioxidant compound, has been already proven to prevent oxidative stress-induced damage associated to lipid peroxidation. As previous studies modeled the impact of oxidative stress on Band 3 protein, an anion exchanger that is essential to erythrocytes homeostasis, by applying H2O2 at not hemolytic concentrations and not producing lipid peroxidation, the aim of the present work was to evaluate the possible antioxidant effect of pharmacological doses of Mel on Band 3 protein anion exchange capability. The experiments have been performed on human erythrocytes exposed to 300 μM H2O2-induced oxidative stress. To this end, oxidative damage has been verified by monitoring the rate constant for SO4= uptake through Band 3 protein. Expression levels of this protein Mel doses lower than 100 µM have also been excluded due to lipid peroxidation, Band 3 protein expression levels, and cell shape alterations, confirming a pro-oxidant action of Mel at certain doses. On the other hand, 100 µM Mel, not provoking lipid peroxidation, restored the rate constant for SO4= uptake, Band 3 protein expression levels, and H2O2-induced cell shape alterations. Such an effect was confirmed by abolishing the endogenous erythrocytes antioxidant system. Therefore, the present findings show the antioxidant power of Mel at pharmacological concentrations in an in vitro model of oxidative stress not associated to lipid peroxidation, thereby confirming Band 3 protein anion exchange capability measurement as a suitable model to prove the beneficial effect of Mel and support the use of this compound in oxidative stress-related diseases affecting Band 3 protein.


Author(s):  
Rossana Morabito ◽  
Alessia Remigante ◽  
Marika Cordaro ◽  
Vincenzo Trichilo ◽  
Saverio Loddo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document