Transcriptome and plant hormone analyses provide new insight into the molecular regulatory networks underlying hybrid lethality in cabbage (Brassica oleracea)

Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Zhiliang Xiao ◽  
Xing Liu ◽  
Zhiyuan Fang ◽  
Limei Yang ◽  
Yangyong Zhang ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Qiao ◽  
Qiming Cheng ◽  
Yutong Zhang ◽  
Wei Yan ◽  
Fengyan Yi ◽  
...  

Abstract Background Sainfoin (Onobrychis viciifolia Scop) is not only a high-quality legume forage, but also a nectar-producing plant. Therefore, the flower color of sainfoin is an important agronomic trait, but the factors affecting its flower phenotype are still unclear. To gain insights into the regulatory networks associated with metabolic pathways of coloration compounds (flavonoids or anthocyanins) and identify the key genes, we conducted a comprehensive analysis of the phenotype, metabolome and transcriptome of WF and AF of sainfoin. Results Delphinidin, petunidin and malvidin derivatives were the main anthocyanin compounds in the AF of sainfoin. These substances were not detected in the WF of sainfoin. The transcriptomes of WF and AF in sainfoin at the S1 and S3 stages were obtained using the Illumina HiSeq4000 platform. Overall, 10,166 (4273 upregulated and 5893 downregulated) and 15,334 (8174 upregulated and 7160 downregulated) DEGs were identified in flowers at S1 and S3 stages, respectively (WF-VS-AF). KEGG pathway annotations showed that 6396 unigenes were annotated to 120 pathways and contained 866 DEGs at S1 stages, and 6396 unigenes were annotated to 131 pathways and included 1546 DEGs at the S3 stage. Nine DEGs belonging to the “flavonoid biosynthesis”and “phenylpropanoid biosynthesis” pathways involved in flower color formation were identified and verified by RT-qPCR analyses. Among these DEGs, 4CL3, FLS, ANS, CHS, DFR and CHI2 exhibited downregulated expression, and F3H exhibited upregulated expression in the WF compared to the AF, resulting in a decrease in anthocyanin synthesis and the formation of WF in sainfoin. Conclusions This study is the first to use transcriptome technology to study the mechanism of white flower formation in sainfoin. Our transcriptome data will be a great enrichment of the genetic information for sainfoin. In addition, the data presented herein will provide valuable molecular information for genetic breeding and provide insight into the future study of flower color polymorphisms in sainfoin.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 982
Author(s):  
Zhiliang Xiao ◽  
Congcong Kong ◽  
Fengqing Han ◽  
Limei Yang ◽  
Mu Zhuang ◽  
...  

Cabbage (Brassica oleracea) is an important vegetable crop that is cultivated worldwide. Previously, we reported the identification of two dominant complementary hybrid lethality (HL) genes in cabbage that could result in the death of hybrids. To avoid such losses in the breeding process, we attempted to develop molecular markers to identify HL lines. Among 54 previous mapping markers closely linked to BoHL1 or BoHL2, only six markers for BoHL2 were available in eight cabbage lines (two BoHL1 lines; three BoHL2 lines; three lines without BoHL); however, they were neither universal nor user-friendly in more inbred lines. To develop more accurate markers, these cabbage lines were resequenced at an ~20× depth to obtain more nucleotide variations in the mapping regions. Then, an InDel in BoHL1 and a single-nucleotide polymorphism (SNP) in BoHL2 were identified, and the corresponding InDel marker MBoHL1 and the competitive allele-specific PCR (KASP) marker KBoHL2 were developed and showed 100% accuracy in eight inbred lines. Moreover, we identified 138 cabbage lines using the two markers, among which one inbred line carried BoHL1 and 11 inbred lines carried BoHL2. All of the lethal line genotypes obtained with the two markers matched the phenotype. Two markers were highly reliable for the rapid identification of HL genes in cabbage.


Blood ◽  
2018 ◽  
Vol 132 (20) ◽  
pp. 2166-2178 ◽  
Author(s):  
Pasquale L. Fedele ◽  
Simon N. Willis ◽  
Yang Liao ◽  
Michael S. Low ◽  
Jai Rautela ◽  
...  

Abstract Recent studies have demonstrated that the immunomodulatory drugs (IMiDs) lead to the degradation of the transcription factors Ikaros and Aiolos. However, why their loss subsequently leads to multiple myeloma (MM) cell death remains unclear. Using CRISPR-Cas9 genome editing, we have deleted IKZF1/Ikaros and IKZF3/Aiolos in human MM cell lines to gain further insight into their downstream gene regulatory networks. Inactivation of either factor alone recapitulates the cell intrinsic action of the IMiDs, resulting in cell cycle arrest and induction of apoptosis. Furthermore, evaluation of the transcriptional changes resulting from their loss demonstrates striking overlap with lenalidomide treatment. This was not dependent on reduction of the IRF4-MYC “axis,” as neither protein was consistently downregulated, despite cell death occurring, and overexpression of either factor failed to rescue for Ikaros loss. Importantly, Ikaros and Aiolos repress the expression of interferon-stimulated genes (ISGs), including CD38, and their loss led to the activation of an interferon-like response, contributing to MM cell death. Ikaros/Aiolos repressed CD38 expression through interaction with the nucleosome remodeling and deacetylase complex in MM. IMiD-induced loss of Ikaros or treatment with interferon resulted in an upregulation of CD38 surface expression on MM cells, priming for daratumumab-induced NK cell-mediated antibody-dependent cellular cytotoxicity. These results give further insight into the mechanism of action of the IMiDs and provide mechanistic rationale for combination with anti-CD38 monoclonal antibodies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanan Yang ◽  
Haonan Yuan ◽  
Tianliang Yang ◽  
Yongqing Li ◽  
Caixia Gao ◽  
...  

To adapt to a low-oxygen environment, Tibetan pigs have developed a series of unique characteristics and can transport oxygen more effectively; however, the regulation of the associated processes in high-altitude animals remains elusive. We performed mRNA-seq and miRNA-seq, and we constructed coexpression regulatory networks of the lung tissues of Tibetan and Landrace pigs. HBB, AGT, COL1A2, and EPHX1 were identified as major regulators of hypoxia-induced genes that regulate blood pressure and circulation, and they were enriched in pathways related to signal transduction and angiogenesis, such as HIF-1, PI3K-Akt, mTOR, and AMPK. HBB may promote the combination of hemoglobin and oxygen as well as angiogenesis for high-altitude adaptation in Tibetan pigs. The expression of MMP2 showed a similar tendency of alveolar septum thickness among the four groups. These results indicated that MMP2 activity may lead to widening of the alveolar wall and septum, alveolar structure damage, and collapse of alveolar space with remarkable fibrosis. These findings provide a perspective on hypoxia-adaptive genes in the lungs in addition to insights into potential candidate genes in Tibetan pigs for further research in the field of high-altitude adaptation.


2016 ◽  
Vol 113 (9) ◽  
pp. 2526-2531 ◽  
Author(s):  
Sibongile Mafu ◽  
Meirong Jia ◽  
Jiachen Zi ◽  
Dana Morrone ◽  
Yisheng Wu ◽  
...  

The substrate specificity of enzymes from natural products’ metabolism is a topic of considerable interest, with potential biotechnological use implicit in the discovery of promiscuous enzymes. However, such studies are often limited by the availability of substrates and authentic standards for identification of the resulting products. Here, a modular metabolic engineering system is used in a combinatorial biosynthetic approach toward alleviating this restriction. In particular, for studies of the multiply reactive cytochrome P450, ent-kaurene oxidase (KO), which is involved in production of the diterpenoid plant hormone gibberellin. Many, but not all, plants make a variety of related diterpenes, whose structural similarity to ent-kaurene makes them potential substrates for KO. Use of combinatorial biosynthesis enabled analysis of more than 20 such potential substrates, as well as structural characterization of 12 resulting unknown products, providing some insight into the underlying structure–function relationships. These results highlight the utility of this approach for investigating the substrate specificity of enzymes from complex natural products’ biosynthesis.


2018 ◽  
Vol 15 (142) ◽  
pp. 20180157 ◽  
Author(s):  
Karen M. Page ◽  
Ruben Perez-Carrasco

Ring oscillators are biochemical circuits consisting of a ring of interactions capable of sustained oscillations. The nonlinear interactions between genes hinder the analytical insight into their function, usually requiring computational exploration. Here, we show that, despite the apparent complexity, the stability of the unique steady state in an incoherent feedback ring depends only on the degradation rates and a single parameter summarizing the feedback of the circuit. Concretely, we show that the range of regulatory parameters that yield oscillatory behaviour is maximized when the degradation rates are equal. Strikingly, this result holds independently of the regulatory functions used or number of genes. We also derive properties of the oscillations as a function of the degradation rates and number of nodes forming the ring. Finally, we explore the role of mRNA dynamics by applying the generic results to the specific case with two naturally different degradation timescales.


2021 ◽  
Author(s):  
Andreu Garcia-Vilanova ◽  
Angelica M. Olmo-Fontanez ◽  
Juan I. Moliva ◽  
Anna Allue Guardia ◽  
Harjinder Singh ◽  
...  

The elderly population is at increased risk of acute and chronic respiratory infections and other pulmonary diseases, and it is estimated that this population will double in the next 30 years. Biochemical changes in the lung alveolar mucosa and lung cells alter local immune response as we age, creating opportunities for invading pathogens to establish successful infections. Indeed, the lungs of the elderly are a pro-inflammatory, pro-oxidative, dysregulated environment but this environment has remained understudied. We performed a comprehensive, quantitative proteomic profile of the lung mucosa in the elderly, developing insight into the molecular fingerprints, pathways, and regulatory networks that characterize the lung in old age. We identified neutrophils in the lungs of elderly individuals as possible contributors to dysregulated lung tissue environment. This study establishes a baseline for future investigations to develop strategies to mitigate susceptibility to respiratory infections in the elderly.


Sign in / Sign up

Export Citation Format

Share Document