illumina hiseq4000
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 2)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Qiao ◽  
Qiming Cheng ◽  
Yutong Zhang ◽  
Wei Yan ◽  
Fengyan Yi ◽  
...  

Abstract Background Sainfoin (Onobrychis viciifolia Scop) is not only a high-quality legume forage, but also a nectar-producing plant. Therefore, the flower color of sainfoin is an important agronomic trait, but the factors affecting its flower phenotype are still unclear. To gain insights into the regulatory networks associated with metabolic pathways of coloration compounds (flavonoids or anthocyanins) and identify the key genes, we conducted a comprehensive analysis of the phenotype, metabolome and transcriptome of WF and AF of sainfoin. Results Delphinidin, petunidin and malvidin derivatives were the main anthocyanin compounds in the AF of sainfoin. These substances were not detected in the WF of sainfoin. The transcriptomes of WF and AF in sainfoin at the S1 and S3 stages were obtained using the Illumina HiSeq4000 platform. Overall, 10,166 (4273 upregulated and 5893 downregulated) and 15,334 (8174 upregulated and 7160 downregulated) DEGs were identified in flowers at S1 and S3 stages, respectively (WF-VS-AF). KEGG pathway annotations showed that 6396 unigenes were annotated to 120 pathways and contained 866 DEGs at S1 stages, and 6396 unigenes were annotated to 131 pathways and included 1546 DEGs at the S3 stage. Nine DEGs belonging to the “flavonoid biosynthesis”and “phenylpropanoid biosynthesis” pathways involved in flower color formation were identified and verified by RT-qPCR analyses. Among these DEGs, 4CL3, FLS, ANS, CHS, DFR and CHI2 exhibited downregulated expression, and F3H exhibited upregulated expression in the WF compared to the AF, resulting in a decrease in anthocyanin synthesis and the formation of WF in sainfoin. Conclusions This study is the first to use transcriptome technology to study the mechanism of white flower formation in sainfoin. Our transcriptome data will be a great enrichment of the genetic information for sainfoin. In addition, the data presented herein will provide valuable molecular information for genetic breeding and provide insight into the future study of flower color polymorphisms in sainfoin.


2019 ◽  
Vol 38 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Amy E. Young ◽  
Tamer A. Mansour ◽  
Bret R. McNabb ◽  
Joseph R. Owen ◽  
Josephine F. Trott ◽  
...  

Abstract Genome editing followed by reproductive cloning was previously used to produce two hornless dairy bulls. We crossed one genome-edited dairy bull, homozygous for the dominant PC Celtic POLLED allele, with horned cows (pp) and obtained six heterozygous (PCp) polled calves. The calves had no horns and were otherwise healthy and phenotypically unremarkable. We conducted whole-genome sequencing of all animals using an Illumina HiSeq4000 to achieve ~20× coverage. Bioinformatics analyses revealed the bull was a compound heterozygote, carrying one naturally occurring PC Celtic POLLED allele and an allele containing an additional introgression of the homology-directed repair donor plasmid along with the PC Celtic allele. These alleles segregated in the offspring of this bull, and inheritance of either allele produced polled calves. No other unintended genomic alterations were observed. These data can be used to inform conversations in the scientific community, with regulatory authorities and with the public around ‘intentional genomic alterations’ and future regulatory actions regarding genome-edited animals.


2019 ◽  
Vol 64 (2) ◽  
pp. 123-137
Author(s):  
O. S. Pshenichnikova ◽  
M. V. Goncharova ◽  
Y. S. Pustovoit ◽  
I. V. Karpova ◽  
V. L. Surin

Introduction. Acute intermittent porphyria (AIP) is the most common and severe form of acute hepatic porphyria. AIP is caused by a deficiency in the third enzyme of the heme biosynthesis system — hydroxymethylbilanine synthase (HMBS) — and has a dominant inheritance type. However, the probability of the clinical manifestation of this condition in carriers of the mutation in the HMBS gene constitutes only 10–20 %. Thi s suggests that the presence of such a mutation can be a necessary but not a sufficient condition for the development of the disease.Aim. To search for additional genetic factors, which determine the clinical penetrance of AIP using Whole-Exome Sequencing.Materials and methods. Sequencing of the whole exome was performed using a TruSeqExomeLibraryPrepkit (Illumina) kit by an Illumina HiSeq4000 instrument for 6 women with API with known mutations in the HMBS gene. All the patients suffered from a severe form of the disease. As a reference, a version of the hg19 human genome was used.Results. No common mutations were found in the examined patients. However, in each patient, functional variations were found in the genes related to detoxification systems, regulation of the heme biosynthesis cascade and expression of delta-aminolevulinic acid synthase (ALAS1) and in genes of proteins regulating nervous system. These variations require further study involving an extended number of patients with AIP manifestations and their relatives, who are asymptomatic carriers of disorders in the gene HMBS.Conclusions. The results obtained have allowed us to formulate a hypothesis about a possible role of genetic defects in the penetrance of AIP, which determine the development of other neurological pathologies. This is evidenced by the presence of gene pathogenic variations in 5 out of 6 examined patients, defects in which are associated with hereditary myasthenia and muscle atrophy.


Animals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 232 ◽  
Author(s):  
Ibukun Ogunade ◽  
Andres Pech-Cervantes ◽  
Hank Schweickart

Subacute ruminal acidosis (SARA) is a metabolic disease of ruminants characterized by low pH, with significant impacts on rumen microbial activity, and animal productivity and health. Microbial changes during subacute ruminal acidosis have previously been analyzed using quantitative PCR and 16S rRNA sequencing, which do not reveal the actual activity of the rumen microbial population. Here, we report the functional activity of the rumen microbiota during subacute ruminal acidosis. Eight rumen-cannulated Holstein steers were assigned randomly to acidosis-inducing or control diet. Rumen fluid samples were taken at 0, 3, 6, and 9 h relative to feeding from both treatments on the challenge day. A metatranscriptome library was prepared from RNA extracted from the samples and the sequencing of the metatranscriptome library was performed on Illumina HiSeq4000 following a 2 × 150 bp index run. Cellulolytic ruminal bacteria including Fibrobacter succinogenes, Ruminococcus albus, and R. bicirculans were reduced by an induced acidotic challenge. Up to 68 functional genes were differentially expressed between the two treatments. Genes mapped to carbohydrate, amino acid, energy, vitamin and co-factor metabolism pathways, and bacterial biofilm formation pathways were enriched in beef cattle challenged with sub-acute acidosis. This study reveals transcriptionally active taxa and metabolic pathways of rumen microbiota during induced acidotic challenge.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Rongchun Han ◽  
Dongmei Xie ◽  
Xiaohui Tong ◽  
Wei Zhang ◽  
Gang Liu ◽  
...  

<em>Dendrobium huoshanense</em> has long been used to treat various diseases in oriental medicine. In order to study its gene expression profile, transcripts involved in the biosynthesis of precursors of polysaccharides, as well as mechanisms underlining morphological differences between wild and cultivated plants, three organs of both wild type and cultivated <em>D. huoshanense</em> were collected and sequenced by Illumina HiSeq4000 platform, yielding 919,409,540 raw reads in FASTQ format. After Trinity de novo assembly and quality control, 241,242 nonredundant contigs with the average length of 967.5 bp were generated. qRT-PCR experiment on the selected transcripts showed the transcriptomic data were reliable. BLASTx was conducted against NR, SwissProt, String, Pfam, and KEGG. Gene ontology annotation revealed more than 40,000 contigs assigned to catalytic activity and metabolic process, suggesting its dynamic physiological activities. By searching KEGG pathway, six genes potentially involved in mannose biosynthetic pathway were retrieved. Gene expression analysis for stems between wild and cultivated <em>D. huoshanense</em> resulted in 956 genes differentially expressed. Simple sequence repeats (SSRs) analysis revealed 143 SSRs with the unit size of 4 and 3,437 SSRs the size of 3. The obtained SSRs are the potential molecular markers for discriminating distinct cultivars of <em>D. huoshanense</em>.


Sign in / Sign up

Export Citation Format

Share Document