Metameric organisation of the nervous system in developmental stages of Urechis caupo (Echiura) and its phylogenetic implications

Zoomorphology ◽  
2002 ◽  
Vol 121 (4) ◽  
pp. 221-234 ◽  
Author(s):  
René Hessling
Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Verena Schultz ◽  
Stephanie L. Cumberworth ◽  
Quan Gu ◽  
Natasha Johnson ◽  
Claire L. Donald ◽  
...  

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination—which is critical for saltatory conduction and neuronal function—has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


2019 ◽  
Author(s):  
Kevin Sugier ◽  
Romuald Laso-Jadart ◽  
Soheib Kerbache ◽  
Jos Kafer ◽  
Majda Arif ◽  
...  

AbstractCopepods are the most numerous animals and play an essential role in the marine trophic web and biogeochemical cycles. The genus Oithona is described as having the highest numerical density, as the most cosmopolite copepod and iteroparous. The Oithona male paradox obliges it to alternate feeding (immobile) and mating (mobile) phases. As the molecular basis of this trade-off is unknown, we investigated this sexual dimorphism at the molecular level by integrating genomic, transcriptomic and protein-protein interaction analyses.While a ZW sex-determination system was predicted in O. nana, a fifteen-year time-series in the Toulon Little Bay showed a biased sex ratio toward females (male / female ratio < 0.15±0.11) highlighting a higher mortality in male. Here, the transcriptomic analysis of the five different developmental stages showed enrichment of Lin12-Notch Repeat (LNR) domains-containing proteins coding genes (LDPGs) in male transcripts. The male also showed enrichment in transcripts involved in proteolysis, nervous system development, synapse assembly and functioning and also amino acid conversion to glutamate. Moreover, several male down-regulated genes were involved in the increase of food uptake and digestion. The formation of LDP complexes was detected by yeast two-hybrid, with interactions involving proteases, extracellular matrix proteins and neurogenesis related proteins.Together, these results suggest that the O. nana male hypermotility is sustained by LDP-modulated proteolysis allowing the releases and conversions of amino acid into the excitatory neurotransmitter glutamate. This process could permit new axons and dendrites formation suggesting a sexual nervous system dimorphism. This could support the hypothesis of a sacrificial behaviour in males at the metabolic level.


2006 ◽  
Vol 51 (2) ◽  
Author(s):  
Tadeusz Moczoń ◽  
Agnieszka Świetlikowska

AbstractThe distribution of acetylcholinesterase (AChE) in oncospheres and developing cysticercoids of Hymenolepis diminuta was examined. The enzyme was localized in the nervous system and in some non-nerve cells of these larvae. In oncospheres AChE was detected in hook muscles and in the binucleated medullar center that is known to enclose two neurons. At early developmental stages of the cysticercoids the enzyme was localized in the post-oncospheral hook muscles and in subtegumental muscle fibers of the cercomer. At medium and late stages of development the activity of AChE was detected in the developing nervous system and in two and, subsequently, in four populations of cells, which gradually spread over the whole internal wall of the cyst, thus forming a thin multilayer AChE-positive lining of the cyst cavity. Following withdrawal of the scolex the lining separates the parenchyma of the turned neck from the cyst tissues and remains AChE-positive during the whole life of the parasite, i.e. up to the death of the infected host. The role played by non-neural AChE associated with the cyst cavity lining is unknown, but seems to regulate both the transport of nutrients and minerals into the scolex and waste substances in the opposite direction.


2019 ◽  
Vol 9 (1) ◽  
pp. 54-60
Author(s):  
Ahmad Galuta ◽  
Eve Tsai

Acquiring live human nervous tissue for research presents ethical and technical constraints. As a result, clinicians and scientists resort to using animal models to investigate human neuronal development and degeneration. However, innate species differences in neurobiology have hindered the translation of disease pathologies and development of therapeutic strategies. The discovery of endogenous neural stem cells (NSCs) and their examination has been critical for neuronal development, degeneration and regeneration. NSCs can exist in different developmental stages, embryonic through adult, and possess the capacity to generate the various cells that make up the nervous system. Importantly, human somatic cells can be obtained non-invasively and genetically reprogrammed into NSCs providing an ethically viable source of stem cells for translational study and potential therapy. Novel methods to generate NSCs of various developmental origins and regional identities are rapidly evolving to provide safer, quicker, and more efficient reprogramming strategies. Reprogrammed NSCs share many molecular and functional attributes with their endogenous NSC counterparts and can be used for in vitro modelling at a large scale. The accessibility to study patient specific NSCs allows the causal inferences of human disease mechanisms that may be unfeasible to model in animals. Despite the novelty of this burgeoning field, the opportunity for translational discoveries in neuronal development and degeneration and for therapeutic applications is unprecedented. This review will highlight the advances in manufacturing NSCs and their translational implications for disease modelling and potential treatment of the nervous system.


1998 ◽  
Vol 353 (1372) ◽  
pp. 1101-1114 ◽  
Author(s):  
R. Leon Hughes ◽  
Leslie S. Hall

Information on the pre–hatching development of the platypus, Ornithorhynchus anatinus , is reliant on a small number of specimens, whose precise age is unknown. Material collected for J. P. Hill and now housed in the Hubrecht International Embryological Laboratory, Utrecht, contributes a major source of specimens. This paper presents new observations on developmental stages from the Hill collection, which allow for a more complete description of pre–hatching development. A feature of the pre–embryonic development of the platypus is the incomplete meroblastic cleavage. A column of fine yolk spheres extends from beneath the embryonic blastodisc towards the centre of a yolky vitellus, as seen in birds. The major expansion of extra–embryonic membranes occurs after the formation of the primitive streak. The primitive streak develops within an embryonal area as part of the superficial wall of the yolk–sac, a feature also shared with marsupials, birds and reptiles. The full–term, subspheroidal, intrauterine egg of the platypus has a major axis of about 17 mm and contains a flat, 19 to 20 somite, neurula–stage embryo which has prominent trigeminal ganglion primordia. The embryo at this stage is in a period of rapid modelling of the major early organ primordia of the nervous system, cardiovascular system, excretory system, and somite–derived components of the body wall. Soon after laying, five primary brain vesicles are present, the trigeminal ganglia CN5 as well as CN7, CN8, CN9, CN10, CN11 and CN12 are well developed. The alimentary system has an expanded stomach, pancreatic primordia and a gall bladder. Mesonephric tubules are associated with patent mesonephric ducts, which empty laterally into the cloaca. Extra–embryonic membranes at this stage show an extensive chorioamniotic connection that extends through the greater part of the caudal half of fused amniotic folds. The vascularized yolk–sac consists of a superficial yolk–sac omphalopleura and a deep yolk–sac splanchnopleure. The non–vascularized yolk–sac comprises one–quarter of the aboembryonal pole. Some distinctive monotreme features have developed by the mid–incubation period. The head is bent at an acute angle to the main body axis. The blunt upturned snout marks the site of the future oscaruncle and on the maxilla there is a median primordial papilla representing the egg tooth. The eye is open with a partly pigmented retinal ring. The forelimbs have partly separated digits, and the hindfeet are paddles. Just before hatching the upturned snout contains an oscaruncle and a sharp recurved median egg tooth. Forelimbs are pronated with separate digits possessing claw primordia. Portions of the highly vascularized extra–embryonic membranes are attached to the umbilical region and the flattened vesicular allantois has a distal region fused with the chorion. Prominent features of the hatchling are the presence of a bluntly conical oscaruncle and a translucent, horn–like egg tooth. These structures are thought to enable the hatchling to extricate itself from the egg shell. At hatching, the forelimbs exhibit clawed digits and are capable of digitopalmar prehension. Hindlimbs are still paddles with digital rays. A prominent yolk–sac navel is present. The newly hatched platypus has an external form similar to that of a new–born marsupial. The early development of the platypus has many major differences to the developmental sequence for humans, which has been categorized by the use of Carnegie Stages. The rate of somitogenesis of the platypus is faster in relation to the central nervous system morphogenesis than seen in humans, and the size of the early platypus embryonal area is massive in relation to that of humans. The unique morphology and function of extra–embryonic membranes in the platypus defies comparative staging with human development. Structures adapted for altricial survival of the platypus hatchling require the acquisition of functional competence at an earlier stage of organogenesis than seen in eutherians, although they are reminiscent of those found in new–born marsupials.


The nervous system of the earliest functional stage of the actinotroch larva of Phoronis vancouverensis is described based on ultrastructural surveys and three-dimensional reconstructions, including serial reconstructions of selected parts of the system. The central element and main source of fibres in the system is the apical organ. Nerve cell bodies were found here and in the surrounding apical epithelium, but nowhere else in the body. Given the limitations of the methods used, the presence of nerve cell bodies elsewhere in the body cannot be ruled out, but based on this work and a recent study by A. Hay-Schmidt of whole larvae, it seems unlikely they occur in any numbers. The larval nervous system is thus highly centralized, an advanced and rather specialized feature in comparison with some other larval types, specifically those of primitive spiralia and echinoderms, in which nerve cell bodies are more widely distributed in the larval epithelium. The largest single nerve in the body is the primary hood nerve, which runs around the pre-oral hood slightly back from its margin. The nerve is a compact, well-defined tract of approximately 40 fibres, with an investment of glial-like accessory cells. A second set of smaller, accessory nerves run parallel to the primary nerve between it and the hood margin. The hood nerves all join at the base of the hood on either side of the mouth to form a pair of adoral nerve centres. A number of small nerves cross the hood from the apical organ to the hood nerves. Three of these are large enough to be considered major nerves: one is medial and connects to the centre of the hood margin, the other two are dorsolateral and connect to the adoral nerve centres. Fibre tracings, which show the distribution of vesicle-filled terminals and varicosities, suggest the hood nerves are mainly involved in neuromuscular control, specifically, in lifting the hood. This involves the stimulation, in sequence, of the radial and circular hood muscles by the primary and accessory hood nerves, respectively. Cells at the hood margin are organized somewhat in the fashion of a conventional ciliary band, but there is no obvious morphological evidence that any of the hood nerves are involved in neurociliary control. A diffuse plexus of small nerves connects the above apical structures to the nerves supplying the tentacles. There are two main tentacle nerves, the primary tentacle nerve, which runs along the upper, oral margin of the tentacular ciliary band, and a smaller accessory nerve, which arises as a branch from the primary nerve, and runs along the lower, aboral margin of the band. There is also a row of uniciliate sensory receptor cells at the oral margin of the band. Each cell has a basal process ending in a vesicle-filled terminal that abuts fibres in the upper tentacle nerve, and forms junctions with them. The cells themselves produce no other fibres. They appear to be mechanosensory, and are probably involved in initiating the hood lift response, which can be triggered by touching the top surface of the tentacles. Additional large, vesicle-filled terminals branch from the fibres in the primary tentacle nerve. Their positions suggest a neurociliary function. The accessory tentacle nerve is associated mainly with muscle cells. A series of small nerves, which probably arise as branches from the larger tentacle nerves, supply the region below the tentacles, later the site of the telotroch. The comparative and phylogenetic implications of the above are discussed. Phoronids are generally interpreted as being intermediate between deuterostomes and protostomes, with a curious mixture of characteristics of both groups. Phoronids are probably only distantly related to spiralian protostomes, but they are, strictly speaking, protostomes, and their larvae resemble the trochophore-type larvae of spiralia in many respects. Regarding ciliary band substructure and patterns of innervation, the actinotroch possesses too few features that are clearly primitive to support a detailed comparison with spiralian larvae, but the pre-oral hood band shows a sufficient number of prototroch-like features, to suggest the hood band and prototroch could be homologous. There is evidence for parallel evolution, in the two groups, of an increasingly centralized nervous system that provides improved effector control via nerve cells located in and around the apical organ. No evidence was obtained to support suggested homologies between the post-oral band of the actinotroch and circumoral or post-oral feeding bands in deuterostome larvae. The two appear, in fact, to be quite dissimilar in terms of their innervation. The results thus support conventional interpretations of the relationship between phoronids and other major groups.


1991 ◽  
Vol 32 (1-4) ◽  
pp. 131-143 ◽  
Author(s):  
Thomas V. Waehneldt ◽  
Joachim Malotka ◽  
Gunnar Jeserich ◽  
Jean-Marie Matthieu

Sign in / Sign up

Export Citation Format

Share Document