Morphological and molecular identification of trematode cercariae related with humans and animal health in freshwater snails from a lake and a dam in Myanmar

Author(s):  
Saw Bawm ◽  
Nang Hnin Ei Khaing ◽  
Shwe Yee Win ◽  
Su Su Thein ◽  
Yadanar Khaing ◽  
...  
2017 ◽  
Vol 6 (6) ◽  
pp. 150 ◽  
Author(s):  
Kurnia Desiandura ◽  
Nunuk Dyah Retno Lastuti ◽  
Lucia Tri Suwanti ◽  
Didik Handijatno

Scabies is a zoonotic skin disease caused by Sarcoptes scabiei mites. As an emerging/re-emerging parasitic disease, scabies represents a significant global threat to both human and animal health. Numerous cases of scabies in Indonesia have been reported, which support research on the prevalence of S. scabiei. However, most such studies have involved conventional morphological studies, with limited molecular diagnostic studies. The purpose of the present study was the genetic characterization of S. scabiei var. cuniculi in domestic rabbits to generate baseline genotypic data. S. scabiei var. cuniculi was isolated and identified from scabies-infected rabbits from the Surabaya and Malang regions of East Java. Molecular identification was performed using Polymerase Chain Reaction (PCR) using specific primers targeting the COX1 gene. We performed COX1 PCR using rabbit isolates of S. scabiei from Indonesia. To the best of our knowledge, no such study had been reported previously. This study was performed in the Laboratory of Veterinary Parasitology, Faculty of Veterinary Medicine and the Tropical Disease Diagnostic Center Laboratory, Universitas Airlangga. The results with agarose gel electrophoresis revealed a 289 bp PCR product amplified from the DNA of S. scabiei isolates from both Surabaya and Malang in accordance with the expected COX1 amplicon size, that indicated a single band 289 bp in length, demonstrating specific detection of S. scabiei var. cuniculi from Surabaya and Malang using COX1 primers. The results were consistent with the calculated amplicon size based on primer positions within the COX1 locus, with the forward primer spanning nucleotides 61–94, and the reverse primer spanning nucleotides 331–350 ( 350 − 61 = 289 bp).  PCR genotyping of the isolates yielded an identical nucleotide length of 289 bp. Further studies are required to sequence the amplified fragments for homology assessment.


2020 ◽  
Vol 21 (6) ◽  
Author(s):  
Ani Widiastuti ◽  
Monica Lucky Karlina ◽  
Kurnia Ritma Dhanti ◽  
Yufita Dwi Chinta ◽  
Tri Joko ◽  
...  

Abstract. Widiastuti A, Karlina ML, Dhanti KR, Chinta YD, Joko T, Suryanti, Wibowo A. 2020. Morphological and molecular identification of Fusarium spp. isolated from maize kernels in Java and Lombok, Indonesia. Biodiversitas 21: 2741-2750. Fungal contamination of maize is a serious problem in Indonesia. Fusarium spp. infect maize in the field will be continuing to contaminate in the post-harvest period even though disease symptoms are not always emerged. Some Fusarium spp. produced mycotoxins which are harmful to human and animal health. Aims of this research were to reveal the presence of Fusarium spp. from both symptomatic and unsymptomatic maize, and to identify them based on morphological characteristics and molecular analysis. Samples of maize were collected from maize cultivation areas in East Java (EJ), Central Java (CJ), West Java (WJ), Yogyakarta Special Province (DIY), and Lombok, West Nusa Tenggara. Fusarium spp. were isolated in a single spore method and cultured in potato dextrose agar (PDA) medium for morphological identification of macro-and microconidia. Molecular identification was conducted by PCR assay using species-specific primers. Furthermore, unidentified species were analyzed by DNA sequence. This research found four species of mycotoxigenic Fusarium isolated from maize-based on molecular identification, which were Fusarium verticillioides (15 isolates), F. proliferatum (6 isolates), F. graminearum (1 isolate) and F. asiaticum (1 isolate). This research showed a novel report of F. asiaticum infection on maize kernel in Indonesia.


Author(s):  
S. E. Miller

The techniques for detecting viruses are many and varied including FAT, ELISA, SPIRA, RPHA, SRH, TIA, ID, IEOP, GC (1); CF, CIE (2); Tzanck (3); EM, IEM (4); and molecular identification (5). This paper will deal with viral diagnosis by electron microscopy and will be organized from the point of view of the electron microscopist who is asked to look for an unknown agent--a consideration of the specimen and possible agents rather than from a virologist's view of comparing all the different viruses. The first step is to ascertain the specimen source and select the method of preparation, e. g. negative stain or embedment, and whether the sample should be precleared by centrifugation, concentrated, or inoculated into tissue culture. Also, knowing the type of specimen and patient symptoms will lend suggestions of possible agents and eliminate some viruses, e. g. Rotavirus will not be seen in brain, nor Rabies in stool, but preconceived notions should not prejudice the observer into missing an unlikely pathogen.


2020 ◽  
Vol 4 (5) ◽  
pp. 449-452
Author(s):  
Alan MacLeod ◽  
Nicola Spence

COVID 19 has raised the profile of biosecurity. However, biosecurity is not only about protecting human life. This issue brings together mini-reviews examining recent developments and thinking around some of the tools, behaviours and concepts around biosecurity. They illustrate the multi-disciplinary nature of the subject, demonstrating the interface between research and policy. Biosecurity practices aim to prevent the spread of harmful organisms; recognising that 2020 is the International Year of Plant Health, several focus on plant biosecurity although invasive species and animal health concerns are also captured. The reviews show progress in developing early warning systems and that plant protection organisations are increasingly using tools that compare multiple pest threats to prioritise responses. The bespoke modelling of threats can inform risk management responses and synergies between meteorology and biosecurity provide opportunities for increased collaboration. There is scope to develop more generic models, increasing their accessibility to policy makers. Recent research can improve pest surveillance programs accounting for real-world constraints. Social science examining individual farmer behaviours has informed biosecurity policy; taking a broader socio-cultural approach to better understand farming networks has the potential to change behaviours in a new way. When encouraging public recreationists to adopt positive biosecurity behaviours communications must align with their values. Bringing together the human, animal, plant and environmental health sectors to address biosecurity risks in a common and systematic manner within the One Biosecurity concept can be achieved through multi-disciplinary working involving the life, physical and social sciences with the support of legislative bodies and the public.


1964 ◽  
Vol 2 (3) ◽  
pp. 183 ◽  
Author(s):  
Suck Young Kang ◽  
In Kyu Loh ◽  
Yung Hoon Park ◽  
Byung Chan Kim ◽  
Too Bong Lim

Sign in / Sign up

Export Citation Format

Share Document