Hydraulic lift in Acacia tortilis trees on an East African savanna

Oecologia ◽  
2002 ◽  
Vol 134 (3) ◽  
pp. 293-300 ◽  
Author(s):  
F. Ludwig ◽  
T. E. Dawson ◽  
H. de Kroon ◽  
F. Berendse ◽  
H. H. T. Prins
Oecologia ◽  
2021 ◽  
Author(s):  
Alejandro G. Pietrek ◽  
Jacob R. Goheen ◽  
Corinna Riginos ◽  
Nelly J. Maiyo ◽  
Todd M. Palmer

Author(s):  
Maximilien Cosme ◽  
Christelle Hély ◽  
Franck Pommereau ◽  
Paolo Pasquariello ◽  
Christel Tiberi ◽  
...  

Sub-Saharan social-ecological systems are undergoing changes in environmental conditions, including modifications in rainfall pattern and biodiversity loss. Consequences of such changes depend on complex causal chains which call for integrated management strategies whose efficiency could benefit from ecosystem dynamic modelling. However, ecosystem models often require lots of quantitative information for estimating parameters, which is often unavailable. Alternatively, qualitative modelling frameworks have proved useful for explaining ecosystem response to perturbations, while requiring fewer information and providing more general predictions. However, current qualitative methods have some shortcomings which may limit their utility for specific issues. In this paper, we propose the Ecological Discrete-Event Network (EDEN), an innovative qualitative dynamic modelling framework based on "if-then" rules which generates many alternative event sequences (trajectories). Based on expert knowledge, observations and literature, we use this framework to assess the effect of permanent changes in surface water and herbivores diversity on vegetation and socio-economic transitions in an East African savanna. Results show that water availability drives changes in vegetation and socio-economic transitions, while herbivore functional groups had highly contrasted effects depending on the group. This first use of EDEN in a savanna context is promising for bridging expert knowledge and ecosystem modelling.


2005 ◽  
Vol 21 (5) ◽  
pp. 509-517 ◽  
Author(s):  
Paul E. Loth ◽  
Willem F. de Boer ◽  
Ignas M. A. Heitkönig ◽  
Herbert H. T. Prins

Germination of Acacia tortilis seeds strongly depends on micro-site conditions. In Lake Manyara National Park, Tanzania, Acacia tortilis occurs abundantly in recently abandoned arable fields and in elephant-mediated gaps in acacia woodland, but does not regenerate in grass swards or beneath canopies. We examined the germination of Acacia tortilis using field and laboratory experiments. Seeds placed on top of the soil rarely germinated, while seeds covered with elephant dung or buried under the soil surface had a germination success between 23–43%. On bare soil 39% of both the dung-covered and buried seeds germinated, in perennial grass swards 24–43%, and under tree canopies 10–24% respectively. In laboratory experiments, seed water absorption correlated positively with temperature up to 41 °C, while subsequent germination was optimal at lower (21–23 °C) temperatures. Seeds that had absorbed water lost their viability when kept above 35.5 °C. The absence of light did not significantly influence germination success. Acacia tortilis does not actively disperse its seeds, but regeneration outside tree canopies was substantial. The regeneration potential thus strongly depends on the physiognomy of the vegetation.


2014 ◽  
Vol 188 ◽  
pp. 12-19 ◽  
Author(s):  
Lucy W. Ngatia ◽  
K. Ramesh Reddy ◽  
P.K. Ramachandran Nair ◽  
Robert M. Pringle ◽  
Todd M. Palmer ◽  
...  

1989 ◽  
Vol 5 (4) ◽  
pp. 375-386 ◽  
Author(s):  
Safianu Rabiu ◽  
Martin Fisher

ABSTRACTThe breeding season and diet of the rat Arvicanthis was monitored from December 1983 to November 1985 in the semi-arid Sudan savanna at Kano, Nigeria, West Africa. Breeding began 1–2 months before the start of the rainy season and ceased at the beginning of the dry season. The diet of Arvicanthis was omnivorous, but with seasonal differences. Monocotyledons and dicotyledons predominated in the diet in the dry season, with seeds and insects increasing in the diet in the rainy season. The major differences between the ecology of Arvicanthis at Kano and on the East African savanna were that in East Africa the breeding season is longer and begins after the start of the rainy season. These and other dissimilarities between the biology of Arvicanthis in the two areas could be due to the effect of climatic differences on food supply and to the possible existence of different taxonomic groupings of Arvicanthis in the two regions.


Ecology ◽  
2017 ◽  
Vol 98 (2) ◽  
pp. 478-488 ◽  
Author(s):  
Justin Dohn ◽  
David J. Augustine ◽  
Niall P. Hanan ◽  
Jayashree Ratnam ◽  
Mahesh Sankaran

Sign in / Sign up

Export Citation Format

Share Document