acacia tortilis
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 45)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 11 ◽  
Author(s):  
Abdulhalim Serafi ◽  
Aisha Azmat ◽  
Muhammad Ahmed ◽  
Mohammed Bafail ◽  
Zahir Hussain

Background: Depression is common in hypertensive patients, and monotherapy may contribute for controlling depression in hypertensive patients and improving the socioeconomic outcomes. Previous studies have shown that Acacia tortilis possesses hypotensive activity. Objectives: Hence, the present study was planned to evaluate the hemodynamic activity and antidepressant effects of an ethanolic extract of Acacia tortilis leaves (ATEL) in salt-induced hypertensive rats. Methods: Sprague-Dawley rats were divided into 5 groups for experiments. The rats received respective treatment for 15 days: G1: Control (C); G2: Hypertensive control (HC: high dietary salt, 4% 10ml/kg); G3-5: HC+ ATEL (50, 100, 150mg/kg respectively). Cardiac hemodynamics (mean arterial blood pressure: MAP and heart rate: HR) were measured in the anaesthetized rats by an invasive method. For this method, one carotid artery was catheterized, a pressure catheter (pressure volume Millar microtip catheter connected to the Mikro-Tip Pressure-Volume System from Ultra Foundation Systems, PowerLab) was inserted, and the blood pressure (MAP in mm Hg) and HR (beats/min) were monitored continuously during the experiment. For the neuropharmacological studies, antidepressant activity was assessed by forced swim test on the 15th day. Results: A dose-dependent significant increase in mobility time was observed in rats (G3-5) treated with HC + different doses of ATEL (p < 0.05). However, the mobility time was significantly reduced by HC (G2) treatment compared with that of the control (p< 0.05). The hypertensive control (high dietary salt: HC) group showed significant increases in SP, DP, MAP, and HR (p<0.05) compared to the control (G1) group. At all doses (50, 100 and 150 mg/kg), MAP and HR were found to decrease significantly (p<0.05) when compared with the values in the HC (G2) group. Further analysis revealed an improvement in heart rate variability (HRV) in ATEL-treated hypertensive rats. Conclusion: The present research suggests that increased dietary salt intake not only increases blood pressure significantly but also increases depression. ATEL contains some efficacious constituents, N, N-dimethyltryptamine (DMT: a 5-HT1A agonist) with predominant antidepressant and antihypertensive activity. Hence, ATEL appears to be a valuable plant extract that can be useful, at least as an adjunct, for therapy in patients who suffer from both depression and hypertension. Objectives: Hence, the present study was planned to evaluate the hemodynamic activity and antidepressant effects of an ethanolic extract of Acacia tortilis leaves (ATEL) in salt-induced hypertensive rats. Methods: Sprague-Dawley rats were divided into 5 groups for experiments. The rats received respective treatment for 15 days: G1: Control (C); G2: Hypertensive control (HC: high dietary salt, 4% 10ml/kg); G3-5: HC+ ATEL (50, 100, 150mg/kg respectively). Cardiac hemodynamics (mean arterial blood pressure: MAP and heart rate: HR) were measured in the anaesthetized rats by an invasive method. For this method, one carotid artery was catheterized, a pressure catheter (pressure volume Millar microtip catheter connected to the Mikro-Tip Pressure-Volume System from Ultra Foundation Systems, PowerLab) was inserted, and the blood pressure (MAP in mm Hg) and HR (beats/min) were monitored continuously during the experiment. For the neuropharmacological studies, antidepressant activity was assessed by forced swim test on the 15th day. Results: A dose-dependent significant increase in mobility time was observed in rats (G3-5) treated with HC + different doses of ATEL (p < 0.05). However, the mobility time was significantly reduced by HC (G2) treatment compared with that of the control (p< 0.05). The hypertensive control (high dietary salt: HC) group showed significant increases in SP, DP, MAP, and HR (p<0.05) compared to the control (G1) group. At all doses (50, 100 and 150 mg/kg), MAP and HR were found to decrease significantly (p<0.05) when compared with the values in the HC (G2) group. Further analysis revealed an improvement in heart rate variability (HRV) in ATEL-treated hypertensive rats. Conclusion: The present research suggests that increased dietary salt intake not only increases blood pressure significantly but also increases depression. ATEL contains some efficacious constituents, N, N-dimethyltryptamine (DMT: a 5-HT1A agonist) with predominant antidepressant and antihypertensive activity. Hence, ATEL appears to be a valuable plant extract that can be useful, at least as an adjunct, for therapy in patients who suffer from both depression and hypertension.


Author(s):  
JI Sagala ◽  
CK Gachuiri ◽  
SG Kuria ◽  
MM Wanyoike

Camel milk production and marketing within the peri-urban areas within pastoral areas is emerging and has high potential due to sendentarization and urbanization of an increasing number of local inhabitants. Performance of grazing camels in these areas is poor due to inadequate feed resources, particularly during the dry season. The objective of this study was to determine the effect of supplementing lactating camels with milled Acacia tortilis pods and ‘Chalbi salt’ on milk yield, calf growth and its economic potential in the peri-urban area of Marsabit town, Kenya. Twenty Somali camels in early lactation (1-4 weeks post-partum) and parities 2 or 3 and their calves were recruited for the study. The dams and their calves were penned and fed individually with the supplements where applicable. The treatments were: browsing only (B), browsing and ‘Chalbi salt’ (BC), 2 kg/day milled Acacia tortilis pods, ‘Chalbi salt’ and browsing (BC2A) and 4 kg/day milled Acacia tortilis pods, ‘Chalbi salt’ and browsing (BC4A). Five camels were randomly allocated to each treatment based on initial live weight in a completely randomized design and data collection done for 90 days. During each milking, the two left or right quarters were alternately reserved for the calf, while the remaining two were milked by hand. Milk yields were recorded daily in the morning and evening for 90 days while the calves were weighed on weekly basis for the same period. The overall total mean milk yield during the experimental period ranged from 233.0 to 298.0 litres during the short rains and dry season, respectively. The mean calf weight gains over the study period were 15.2, 19.0, 32.2 and 39.0 kg for B, BC, BC2A and BC4A, respectively, with BC4A and BC2A being higher than B. Supplementing camels under treatment BC4A was profitable as it resulted in both higher milk yield and calf weight gain and hence positive net gain. Int. J. Agril. Res. Innov. Tech. 11(1): 117-122, June 2021


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fedae A. Alhaddad ◽  
Mohammed H. Abu-Dieyeh ◽  
El-Sayed Mohamed ElAzazi ◽  
Talaat A. Ahmed

AbstractScarcity of water and the small area of the agricultural land are considered as the crucial environmental issues challenged the Arabian Gulf countries. In this study, experiments were conducted to identify the salt tolerance during the germination and the seedling stages of some native halophytes in the State of Qatar. Seeds of eight native species (Salsola setifera, Halopeplis perfoliata, Caroxylon imbricatum, Suaeda aegyptiaca, Acacia tortilis, Limonium axillare, Tetraena qatarensis and Aeluropus lagopoides) were investigated. Except for Tetraena qatarensis, Acacia tortilis and Suaeda aegyptiaca, all achieved ≥ 30% of seed germination at a concentration of 200 mM NaCl. Around 30% of Salsola setifera seeds were able to germinate in a salt concentration of 400 mM. Germination recovery of seeds that have been treated with 800 mM NaCl for 3 weeks was the greatest for Halopeplis perfoliata (94%) and the lowest for Aeluropus lagopoides (22%). Five halophytes were investigated for seedling growth under saline irrigation ranged from 0 to 600 mM NaCl. No significant differences obtained in growth biomass of seedlings of each of Caroxylon imbricatum, Suaeda aegyptiaca and Tetraena qatarensis between saline and non-saline treatments.


2021 ◽  
Vol 15 (1) ◽  
pp. 144-155
Author(s):  
Mahamat Abakar Guihini ◽  
Mariama Dalanda Diallo ◽  
Aly Diallo ◽  
Minda Mahamat Saleh ◽  
Aliou Guisse

Les déficits pluviométriques combinés à l’action anthropique ont entrainé une dégradation des ressources naturelles à partir desquelles les paysans tchadiens tirent leurs moyens de subsistance. Cette étude avait pour objectif de déterminer la composition floristique, la circonférence et la hauteur des peuplements ligneux dans deux sites de la Grande Muraille Verte du Tchad (Batha et Wadi-Fira Ouest). Pour cela, nous avons utilisé la méthode des relevés floristiques et des mesures dendrométriques pour caractériser lavégétation. Cette méthode nous a permis d’inventorier 15 espèces réparties en 11 genres et 6 familles. Les espèces les plus dominantes sont Balanites aegyptiaca (Delile), Acacia tortilis (Forssk.) Hayne subsp. raddiana (Savi) Brenan et Capparis decidua Edgew (Forssk.). La répartition des individus selon la grosseur et la hauteur permettent d’établir la structure du peuplement ligneux. Ainsi, dans le Batha, le peuplement ligneux ainsi que les espèces dominantes (Balanites aegyptiaca, Acacia raddiana et Capparis decidua) est constitué de cinquante-deux virgule seize pour cent (52,16%) d’individus qui ont une circonférence comprise entre 10 et 50 cm. Au niveau de Wadi-Fira Ouest, le peuplement est dominé par des individus de circonférence comprise entre 20 et 60 cm. Le peuplement du Batha renferme des individus qui ont une hauteur comprise entre 1 et 14 m. Quatre-vingt-six virgule soixante-sept pour cent (86,67%) des espèces ont une hauteur inférieure ou égale à 7 m. Tandis que dans le Wadi-Fira Ouest, la hauteur des individus du peuplement varie de 0,9 à 12 m et quatrevingt-dix pour cent (90%) des individus ont une hauteur comprise entre 0,9 et 7 m. La strate ligneuse estdominée par des arbustes en grande partie. L’étude a permis de mettre en évidence que les facteurs d’ordre climatique et anthropique ont un impact sur l’environnement des sites.Mots clés : Ligneux, Circonférence, Hauteur, Batha, Wadi-Fira Ouest, Tchad


2021 ◽  
Author(s):  
Ashraf Al-Ashhab ◽  
Shiri Meshner ◽  
Rivka Alexander-Shani ◽  
Hana Dimerets ◽  
Michael Brandwein ◽  
...  

Abstract Background: The evolutionary relationships and interactions between plants and their microbiomes are of high importance to the survival of plants in extreme conditions. Changes in the plant’s microbiome can affect plant development, growth and health. Along the arid Arava, southern Israel, acacia trees (Acacia raddiana and Acacia tortilis) are considered keystone species. In this study, we investigated the ecological effects of plant species, microclimate (different areas within the tree canopy) and seasonality on the epiphytic and endophytic microbiomes associated with these two tree species. One hundred and thirty nine leaf samples were collected throughout the year and their microbial communities were assessed using 16S rDNA gene amplified with five different primers (targeting different gene regions) and sequenced (150 bp paired-end) on an Illumina MiSeq sequencing platform.Results: Epiphytic bacterial diversity estimates (Shannon-Wiener, Chao1, Simpson and observed number of OTUs), were found to be nearly double compared to endophyte counterparts, in addition epi- and endophyte communities were significantly different from each other. Interestingly, the epiphytic bacterial diversity was similar in the two acacia species but the canopy sides and sample months exhibited different diversity, while the endophytic bacterial communities were different in the two acacia species but similar throughout the year. Abiotic factors, such as air temperature and precipitation, were shown to significantly affect both epi- and endophytes communities. Bacterial community compositions showed that Firmicutes dominate Acacia raddiana and Proteobacteria dominate Acacia tortilis; these bacterial communities only consisted of a small number of bacterial families mainly Bacillaceae and Comamonadaceae in the endophyte for A. raddiana and A. tortilis, respectively, and Geodematophilaceae and Micrococcaceae for epiphyte bacterial communities. Interestingly, about 60% of the obtained bacterial classification were unclassified below family level. Conclusions: These results shed light on the unique desert phyllosphere microbiome highlighting the importance of multiple genotypic and abiotic factors in shaping the epiphytic and endophytic microbial communities. This study also shows that only a few bacterial families dominate both epi- and endophytes, highlighting the importance of climate change (precipitation, air temperature and humidity) in affecting arid land ecosystems where acacia trees are considered keystone species.


2021 ◽  
Vol 19 (1) ◽  
pp. 1171-1182
Author(s):  
Wed Mohammed Ali ALaerjani ◽  
Saraa Abdullah Abu-Melha ◽  
Khalid Ali Khan ◽  
Hamed A. Ghramh ◽  
Ali Yahya A. Alalmie ◽  
...  

Abstract Acacia honey is characterized by high nutritional, antioxidant, antibacterial and immuno-modulatory values. This work investigated the presence of short and cyclic peptides in Acacia and Ziziphus honey samples. Acacia honey samples (Acacia tortilis and Acacia hamulosa) and three Ziziphus honeys (Ziziphus spina-christi) were screened for their short and cyclic peptide contents using the LC-MS and the chemical structure databases. Moreover, the total protein content was determined using the Bradford method. The A. tortilis honey contained three short peptides; HWCC, DSST, and ECH, and the A. hamulosa honey sample contained five short peptides and one cyclic peptide. The short peptides of the A. hamulosa honey were Ac-GMGHG-OH (Ac-MGGHG-OH), Boc-R(Aloc)2-C(Pal)-OH, H-C (1)-NEt2·H-C (1)-NEt2, APAP (AAPP), and GAFQ (deamino-2-pyrid-4-yl-glycyl-dl-alanyl-dl-norvalyl-dl-asparagine). The cyclic peptide of the A. hamulosa honey was cyclo[Aad-RGD-d-F] (cyclo[Aad-Arg-Gly-Asp-d-Phe]). The Ziziphus honey was characterized by the presence of either Almiramide B or Auristatin-6-AQ. A. tortilis, A. hamulosa, and Ziziphus honeys are characterized by the presence of short and cyclic peptides which may contribute to their medicinal values.


Sign in / Sign up

Export Citation Format

Share Document