Nitrogen pollution promotes changes in the niche space of fish communities

Oecologia ◽  
2021 ◽  
Author(s):  
Débora Reis de Carvalho ◽  
Jed P. Sparks ◽  
Alexander S. Flecker ◽  
Carlos Bernardo Mascarenhas Alves ◽  
Marcelo Zacharias Moreira ◽  
...  
2018 ◽  
Vol 10 (12) ◽  
pp. 4784 ◽  
Author(s):  
Jun Hur ◽  
Min-Ho Jang ◽  
Kyung-Hoon Shin ◽  
Kyung-Lak Lee ◽  
Kwang-Hyeon Chang

To estimate the impact of weirs on large river fish communities, we applied the ecological niche space (ENS) measured quantitatively using carbon and nitrogen stable isotope ratios to the monitoring of effects of weirs constructed on four major rivers in Korea. ENS was calculated using the Bayesian stable isotope in R statistics. The ENS of fish communities showed persistent differences between upstream and downstream areas of all studied weirs. The ENSs of omnivores were larger in upstream impounded areas but the ENSs of predator species, both endemic (Erythroculter erythropterus) and exotic (Micropterus salmoides) predators had decreased ENSs in upstream areas. E. erythropterus showed horizontal variations in a wide range of carbon stable isotopes, whereas M. salmoides showed vertical variations in nitrogen stable isotopes. The results suggest that weir construction may have species-specific impact on the ENS of fish community by impoundment and increase niche overlap in upstream areas of the weir. The measured ENS of fish community was significantly correlated with the relative abundance of tolerant species negatively, whereas correlated with that of endemic species positively, suggesting that the ENS can be used as a comprehensive indicator of habitat conditions.


Author(s):  
Jian-Ping Suen ◽  
Edwin E. Herricks ◽  
J. Wayland Eheart ◽  
Fi-John Chang

2019 ◽  
Author(s):  
Aaron Matthius Eger ◽  
Rebecca J. Best ◽  
Julia Kathleen Baum

Biodiversity and ecosystem function are often correlated, but there are multiple hypotheses about the mechanisms underlying this relationship. Ecosystem functions such as primary or secondary production may be maximized by species richness, evenness in species abundances, or the presence or dominance of species with certain traits. Here, we combined surveys of natural fish communities (conducted in July and August, 2016) with morphological trait data to examine relationships between diversity and ecosystem function (quantified as fish community biomass) across 14 subtidal eelgrass meadows in the Northeast Pacific (54° N 130° W). We employed both taxonomic and functional trait measures of diversity to investigate if ecosystem function is driven by species diversity (complementarity hypothesis) or by the presence or dominance of species with particular trait values (selection or dominance hypotheses). After controlling for environmental variation, we found that fish community biomass is maximized when taxonomic richness and functional evenness is low, and in communities dominated by species with particular trait values – those associated with benthic habitats and prey capture. While previous work on fish communities has found that species richness is positively correlated with ecosystem function, our results instead highlight the capacity for regionally prevalent and locally dominant species to drive ecosystem function in moderately diverse communities. We discuss these alternate links between community composition and ecosystem function and consider their divergent implications for ecosystem valuation and conservation prioritization.


2016 ◽  
Vol 548 ◽  
pp. 31-45 ◽  
Author(s):  
K Matheson ◽  
CH McKenzie ◽  
RS Gregory ◽  
DA Robichaud ◽  
IR Bradbury ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document