Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: scaling to show possible adaptation to differing light regimes

Oecologia ◽  
1998 ◽  
Vol 114 (3) ◽  
pp. 293 ◽  
Author(s):  
Melvin T. Tyree ◽  
Virginia Velez ◽  
J. W. Dalling
2012 ◽  
Vol 39 (8) ◽  
pp. 661 ◽  
Author(s):  
Krõõt Aasamaa ◽  
Anu Sõber

The light sensitivity of the shoot hydraulic conductance in five temperate deciduous tree species was measured using two methods to clarify the role of light sensitivity and the suitability of the methods used to study it. The light sensitivity measured using a method that included an interruption of ≤10 min in shoot light acclimation did not differ from that measured using a method with continuous illumination. The ‘noncontinuous light’ methods are suitable for measuring hydraulic conductance and its light response. Light sensitivity correlated with other leaf water traits as follows: positively with the ion-mediated increase in xylem hydraulic conductance; a relative decrease in the hydraulic conductance of the laminae in response to HgCl2; a relative change in stomatal conductance in response to changes in PAR intensity or atmospheric CO2 concentration, or to a decrease in air humidity or leaf water potential; and with instantaneous water use efficiency. The traits correlated negatively with shoot hydraulic conductance, stomatal conductance and relative increases in stomatal conductance in response to increases in leaf water potential. We suggest that high light sensitivity should be considered as one of the characteristics of conservative water use in trees. Low blue light increased shoot hydraulic conductance to a similar extent to moderate white light and twice as much as moderate red light. Blue light perception is important in the light sensitivity mechanism.


2021 ◽  
Author(s):  
Tatiane Viegas Debiasi ◽  
Anderson Kikuchi Calzavara ◽  
Ladaslav Sodek ◽  
Halley Caixeta Oliveira

2012 ◽  
Vol 40 (4) ◽  
pp. 693-706 ◽  
Author(s):  
Paul D. Rymer ◽  
Christopher W. Dick ◽  
Giovanni G. Vendramin ◽  
Anna Buonamici ◽  
David Boshier

2011 ◽  
Vol 7 (3) ◽  
pp. 655-661 ◽  
Author(s):  
Malia Chevolot ◽  
Eliane Louisanna ◽  
Wassim Azri ◽  
Nathalie Leblanc-Fournier ◽  
Patricia Roeckel-Drevet ◽  
...  

1996 ◽  
Vol 148 (2) ◽  
pp. 275-298 ◽  
Author(s):  
E. A. Stacy ◽  
J. L. Hamrick ◽  
J. D. Nason ◽  
S. P. Hubbell ◽  
R. B. Foster ◽  
...  

2015 ◽  
Vol 39 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Thaís Mazzanatti ◽  
Anderson Kikuchi Calzavara ◽  
José Antonio Pimenta ◽  
Halley Caixeta Oliveira ◽  
Renata Stolf-Moreira ◽  
...  

2012 ◽  
Vol 28 (5) ◽  
pp. 527-530 ◽  
Author(s):  
Carl F. Salk

Plants have an inherent flexibility to respond to different environmental conditions. One axis of plant ecophysiological strategy is seen in the spectrum of leaf functional traits. Flexibility in these traits would be suggestive of plants’ phenotypic plasticity in response to environmental changes. This research seeks to identify differences between leaves of sprout and non-sprout shoots of a broad ecological range of neotropical tree species. Using a functional-trait approach, this study assesses a large pool of species for within-species physiological flexibility. Leaf mass per area (LMA) and leaf area were measured for plants of sprout and non-sprout origin for 26 tree species grown in a reforestation plantation in Panama. Sprouts had a consistently lower LMA than non-sprouts, but there was no consistent pattern for leaf area. These trends show that sprouts are more like pioneer species than conspecific saplings, a finding in general agreement with fast sprout growth seen in previous studies. Further, later-successional (high LMA) species showed a greater reduction of LMA in sprouts. These results show that tropical tree species adjust physiologically to changing ecological roles and suggest that certain species may be more resilient than realized to changing climate and disturbance patterns.


Oecologia ◽  
1999 ◽  
Vol 119 (2) ◽  
pp. 208-218 ◽  
Author(s):  
David S. Hammond ◽  
Valerie K. Brown ◽  
Roderick Zagt

Sign in / Sign up

Export Citation Format

Share Document