cam photosynthesis
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 34)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jose J Moreno-Villena ◽  
Haoran Zhou ◽  
Ian S Gilman ◽  
S. Lori Tausta ◽  
C. Y. Maurice Cheung

C4 and CAM photosynthesis have repeatedly evolved in plants over the past 30 million years. Because both repurpose the same set of enzymes but differ in their spatial and temporal deployment, they have long been considered as distinct and incompatible adaptations. Remarkably, Portulaca contains multiple C4 species that perform CAM when droughted. Spatially explicit analyses of gene expression reveal that C4 and CAM systems are completely integrated in P. oleracea, with CAM and C4 carbon fixation occurring in the same cells and CAM-generated metabolites likely incorporated directly into the C4 cycle. Flux balance analysis corroborates the gene expression and predicts an integrated C4+CAM system under drought. This first spatially explicit description of a C4+CAM photosynthetic metabolism presents a new blueprint for crop improvement.


2021 ◽  
Author(s):  
Karolina Heyduk ◽  
Edward McAssey ◽  
James Leebens-Mack

CAM photosynthesis has evolved repeatedly across the plant tree of life, yet our understanding of the genetic convergence across independent origins remains hampered by the lack of comparative studies. CAM is furthermore thought to be closely linked to the circadian clock in order to achieve temporal separation of carboxylation and sugar production. Here, we explore gene expression profiles in eight species from the Agavoideae (Asparagaceae) encompassing three independent origins of CAM. Using comparative physiology and transcriptomics, we examined the variable modes of CAM in this subfamily and the changes in gene expression across time of day and between well-watered and drought-stressed treatments. We further assessed gene expression and molecular evolution of genes encoding phosphoenolpyruvate carboxylase (PPC), an enzyme required for primary carbon fixation in CAM. Most time-of-day expression profiles are largely conserved across all eight species and suggest that large perturbations to the central clock are not required for CAM evolution. In contrast, transcriptional response to drought is highly lineage specific. Yucca and Beschorneria have CAM-like expression of PPC2, a copy of PPC that has never been shown to be recruited for CAM in angiosperms, and evidence of positive selection in PPC genes implicates mutations that may have facilitated the recruitment for CAM function early in the evolutionary history of the Agavoideae. Together the physiological and transcriptomic comparison of closely related C3 and CAM species reveals similar gene expression profiles, with the notable exception of differential recruitment of carboxylase enzymes for CAM function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David Wickell ◽  
Li-Yaung Kuo ◽  
Hsiao-Pei Yang ◽  
Amra Dhabalia Ashok ◽  
Iker Irisarri ◽  
...  

AbstractTo conserve water in arid environments, numerous plant lineages have independently evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte, can also perform CAM as an adaptation to low CO2 availability underwater. However, little is known about the evolution of CAM in aquatic plants and the lack of genomic data has hindered comparison between aquatic and terrestrial CAM. Here, we investigate underwater CAM in Isoetes taiwanensis by generating a high-quality genome assembly and RNA-seq time course. Despite broad similarities between CAM in Isoetes and terrestrial angiosperms, we identify several key differences. Notably, Isoetes may have recruited the lesser-known ‘bacterial-type’ PEPC, along with the ‘plant-type’ exclusively used in other CAM and C4 plants for carboxylation of PEP. Furthermore, we find that circadian control of key CAM pathway genes has diverged considerably in Isoetes relative to flowering plants. This suggests the existence of more evolutionary paths to CAM than previously recognized.


2021 ◽  
Author(s):  
Klaus Winter ◽  
J. Andrew C. Smith
Keyword(s):  

2021 ◽  
Author(s):  
David Wickell ◽  
Li-Yaung Kuo ◽  
Hsiao-Pei Yang ◽  
Amra Dhabalia Ashok ◽  
Iker Irisarri ◽  
...  

To conserve water in arid environments, numerous plant lineages have independently evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte, can also perform CAM as an adaptation to low CO2 availability underwater. However, little is known about the evolution of CAM in aquatic plants and the lack of genomic data has hindered comparison between aquatic and terrestrial CAM. Here, we investigated the underwater CAM in Isoetes taiwanensis by generating a high-quality genome assembly and RNA-seq time course. Despite broad similarities between CAM in Isoetes and terrestrial angiosperms, we identified several key differences. Notably, for carboxylation of PEP, Isoetes recruited the lesser-known "bacterial-type" PEPC, along with the "plant-type" exclusively used in other terrestrial CAM and C4 plants. Furthermore, we found that circadian control of key CAM pathway genes has diverged considerably in Isoetes relative to flowering plants. This suggests the existence of more evolutionary paths to CAM than previously recognized.


2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Katharina Schiller ◽  
Andrea Bräutigam

Crassulacean acid metabolism (CAM) has evolved from a C3 ground state to increase water use efficiency of photosynthesis. During CAM evolution, selective pressures altered the abundance and expression patterns of C3 genes and their regulators to enable the trait. The circadian pattern of CO2 fixation and the stomatal opening pattern observed in CAM can be explained largely with a regulatory architecture already present in C3 plants. The metabolic CAM cycle relies on enzymes and transporters that exist in C3 plants and requires tight regulatory control to avoid futile cycles between carboxylation and decarboxylation. Ecological observations and modeling point to mesophyll conductance as a major factor during CAM evolution. The present state of knowledge enables suggestions for genes for a minimal CAM cycle for proof-of-concept engineering, assuming altered regulation of starch synthesis and degradation are not critical elements of CAM photosynthesis and sufficient malic acid export from the vacuole is possible. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Andreas H. Schweiger ◽  
Nicolai M. Nürk ◽  
Heath Beckett ◽  
Sigrid Liede‐Schumann ◽  
Guy F. Midgley ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Shi ◽  
Xingtan Zhang ◽  
Xiaojun Chang ◽  
Maokai Yan ◽  
Heming Zhao ◽  
...  

Abstract Background Crassulacean acid metabolism (CAM) photosynthesis is an important carbon fixation pathway especially in arid environments because it leads to higher water-use efficiency compared to C3 and C4 plants. However, the role of DNA methylation in regulation CAM photosynthesis is not fully understood. Results Here, we performed temporal DNA methylome and transcriptome analysis of non-photosynthetic (white base) and photosynthetic (green tip) tissues of pineapple leaf. The DNA methylation patterns and levels in these two tissues were generally similar for the CG and CHG cytosine sequence contexts. However, CHH methylation was reduced in white base leaf tissue compared with green tip tissue across diel time course in both gene and transposon regions. We identified thousands of local differentially methylated regions (DMRs) between green tip and white base at different diel periods. We also showed that thousands of genes that overlapped with DMRs were differentially expressed between white base and green tip leaf tissue across diel time course, including several important CAM pathway-related genes, such as beta-CA, PEPC, PPCK, and MDH. Conclusions Together, these detailed DNA methylome and transcriptome maps provide insight into DNA methylation changes and enhance our understanding of the relationships between DNA methylation and CAM photosynthesis.


2021 ◽  
Author(s):  
Joseph A. M. Holtum ◽  
Lillian P. Hancock ◽  
Erika J. Edwards ◽  
Klaus Winter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document