Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum

2003 ◽  
Vol 25 (5) ◽  
pp. 291-298 ◽  
Author(s):  
H. Shimizu ◽  
H. Tanaka ◽  
A. Nakato ◽  
K. Nagahisa ◽  
E. Kimura ◽  
...  
2003 ◽  
Vol 60 (5) ◽  
pp. 547-555 ◽  
Author(s):  
C. Varela ◽  
E. Agosin ◽  
M. Baez ◽  
M. Klapa ◽  
G. Stephanopoulos

2006 ◽  
Vol 73 (4) ◽  
pp. 1308-1319 ◽  
Author(s):  
Yoko Asakura ◽  
Eiichiro Kimura ◽  
Yoshihiro Usuda ◽  
Yoshio Kawahara ◽  
Kazuhiko Matsui ◽  
...  

ABSTRACT l-Glutamate overproduction in Corynebacterium glutamicum, a biotin auxotroph, is induced by biotin limitation or by treatment with certain fatty acid ester surfactants or with penicillin. We have analyzed the relationship between the inductions, 2-oxoglutarate dehydrogenase complex (ODHC) activity, and l-glutamate production. Here we show that a strain deleted for odhA and completely lacking ODHC activity produces l-glutamate as efficiently as the induced wild type (27.8 mmol/g [dry weight] of cells for the ohdA deletion strain compared with only 1.0 mmol/g [dry weight] of cells for the uninduced wild type). This level of production is achieved without any induction or alteration in the fatty acid composition of the cells, showing that l-glutamate overproduction can be caused by the change in metabolic flux alone. Interestingly, the l-glutamate productivity of the odhA-deleted strain is increased about 10% by each of the l-glutamate-producing inductions, showing that the change in metabolic flux resulting from the odhA deletion and the inductions have additive effects on l-glutamate overproduction. Tween 40 was indicated to induce drastic metabolic change leading to l-glutamate overproduction in the odhA-deleted strain. Furthermore, optimizing the metabolic flux from 2-oxoglutarate to l-glutamate by tuning glutamate dehydrogenase activity increased the l-glutamate production of the odhA-deleted strain.


1999 ◽  
Vol 1 (3) ◽  
pp. 224-231 ◽  
Author(s):  
Pierre Gourdon ◽  
Nicholas D. Lindley

2004 ◽  
Vol 70 (12) ◽  
pp. 7277-7287 ◽  
Author(s):  
Christoph Wittmann ◽  
Patrick Kiefer ◽  
Oskar Zelder

ABSTRACT Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-13CFru]sucrose, [1-13CGlc]sucrose, and [13C6 Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTSMan or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.


2013 ◽  
Vol 35 (6) ◽  
pp. 943-950 ◽  
Author(s):  
Xuan Guo ◽  
Jing Wang ◽  
Xixian Xie ◽  
Qingyang Xu ◽  
Chenglin Zhang ◽  
...  

2005 ◽  
Vol 71 (10) ◽  
pp. 5920-5928 ◽  
Author(s):  
Corinna Stansen ◽  
Davin Uy ◽  
Stephane Delaunay ◽  
Lothar Eggeling ◽  
Jean-Louis Goergen ◽  
...  

ABSTRACT Gene expression changes of glutamate-producing Corynebacterium glutamicum were identified in transcriptome comparisons by DNA microarray analysis. During glutamate production induced by a temperature shift, C. glutamicum strain 2262 showed significantly higher mRNA levels of the NCgl2816 and NCgl2817 genes than its non-glutamate-producing derivative 2262NP. Reverse transcription-PCR analysis showed that the two genes together constitute an operon. NCgl2816 putatively codes for a lactate permease, while NCgl2817 was demonstrated to encode quinone-dependent l-lactate dehydrogenase, which was named LldD. C. glutamicum LldD displayed Michaelis-Menten kinetics for the substrate l-lactate with a Km of about 0.51 mM. The specific activity of LldD was about 10-fold higher during growth on l-lactate or on an l-lactate-glucose mixture than during growth on glucose, d-lactate, or pyruvate, while the specific activity of quinone-dependent d-lactate dehydrogenase differed little with the carbon source. RNA levels of NCgl2816 and lldD were about 18-fold higher during growth on l-lactate than on pyruvate. Disruption of the NCgl2816-lldD operon resulted in loss of the ability to utilize l-lactate as the sole carbon source. Expression of lldD restored l-lactate utilization, indicating that the function of the permease gene NCgl2816 is dispensable, while LldD is essential, for growth of C. glutamicum on l-lactate.


1999 ◽  
Vol 25 (8-9) ◽  
pp. 762-768 ◽  
Author(s):  
S. Delaunay ◽  
P. Gourdon ◽  
P. Lapujade ◽  
E. Mailly ◽  
E. Oriol ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document