scholarly journals Randomized Incremental Construction of Delaunay Triangulations of Nice Point Sets

Author(s):  
Jean-Daniel Boissonnat ◽  
Olivier Devillers ◽  
Kunal Dutta ◽  
Marc Glisse

Abstract Randomized incremental construction (RIC) is one of the most important paradigms for building geometric data structures. Clarkson and Shor developed a general theory that led to numerous algorithms which are both simple and efficient in theory and in practice. Randomized incremental constructions are usually space-optimal and time-optimal in the worst case, as exemplified by the construction of convex hulls, Delaunay triangulations, and arrangements of line segments. However, the worst-case scenario occurs rarely in practice and we would like to understand how RIC behaves when the input is nice in the sense that the associated output is significantly smaller than in the worst case. For example, it is known that the Delaunay triangulation of nicely distributed points in $${\mathbb {E}}^d$$ E d or on polyhedral surfaces in $${\mathbb {E}}^3$$ E 3 has linear complexity, as opposed to a worst-case complexity of $$\Theta (n^{\lfloor d/2\rfloor })$$ Θ ( n ⌊ d / 2 ⌋ ) in the first case and quadratic in the second. The standard analysis does not provide accurate bounds on the complexity of such cases and we aim at establishing such bounds in this paper. More precisely, we will show that, in the two cases above and variants of them, the complexity of the usual RIC is $$O(n\log n)$$ O ( n log n ) , which is optimal. In other words, without any modification, RIC nicely adapts to good cases of practical value. At the heart of our proof is a bound on the complexity of the Delaunay triangulation of random subsets of $${\varepsilon }$$ ε -nets. Along the way, we prove a probabilistic lemma for sampling without replacement, which may be of independent interest.

1995 ◽  
Vol 05 (01n02) ◽  
pp. 193-213 ◽  
Author(s):  
STEVEN FORTUNE

We consider the correctness of 2-d Delaunay triangulation algorithms implemented using floating-point arithmetic. The α-pseudocircle through points a, b, c consists of three circular arcs connecting ab, bc, and ac, each arc inside the circumcircle of a, b, c and forming angle α with the circumcircle; a triangulation is α-empty if the α-pseudocircle through the vertices of each triangle is empty. We show that a simple Delaunay triangulation algorithm—the flipping algorithm—can be implemented to produce O(n∈)-empty triangulations, where n is the number of point sites and ∈ is the relative error of floating-point arithmetic; its worst-case running time is O(n2). We also discuss floating-point implementation of other 2-d Delaunay triangulation algorithms.


Author(s):  
Emily Eshraghian ◽  
Nathan Jacobs ◽  
Jeffrey Morgan

Here we extend and update our earlier projections of COVID-19 hospitalizations in San Diego County (1), and report a more optimistic outlook through the end of April 2020. San Diego confirmed its first case of COVID-19 on March 7, 2020. Several mitigation efforts were enacted on various dates, including a state-mandated stay-at-home order and enforcement of social distancing in public areas. Though mitigation strategies are helping lower the burden of disease, incident cases continue to increase exponentially. Our updated model includes data up to April 7 and does not forecast beyond April 30. Our approach uses a “wisdom of crowds” strategy (see link to methods for details) where a range of outbreak models from worst case scenario (Model A) to best case scenario (Model C) were presented to experts and non-experts (n=8) who were asked to vote on a most plausible model for expected COVID-19 spread. Final vote tallies were used to create a weighted average (Model M) as the official model projection. Our model predicts that San Diego County will not hit hospital capacity for standard hospital beds (panel a) nor for intensive care unit (ICU) beds (panel b) within April 2020. If current conditions continue, we predict the expected “surge” in hospitalizations to occur without surpassing hospital capacity, and that hospitalizations will decrease thereafter until the outbreak has been contained. However, it is important to note that factors such as changes in social distancing policies, even if occurring when existing or incident cases are low, may still result in new outbreaks and future spikes in hospitalizations. Furthermore, no models have been extensively validated for COVID-19. We encourage all residents of San Diego to continue rigorously following social distancing practices to improve the likelihood of best case scenarios and limit the scope of possible worst case scenarios.


1988 ◽  
Vol 11 (3) ◽  
pp. 275-288
Author(s):  
Jyrki Katajainen ◽  
Markku Koppinen

Recently Rex Dwyer [D87] presented an algorithm which constructs a Delaunay triangulation for a planar set of N sites in O(N log log N) expected time and O(N log N) worst-case time. We show that a slight modification of his algorithm preserves the worst-case running time, but has only O(N) average running time. The methcxl is a hybrid which combines the cell technique with the divide-and-conquer algorithm of Guibas & Stolfi [GS85]. First a square grid of size about N by N is placed on the set of sites. The grid forms about N cells (buckets), each of which is implemented as a list of the sites which fall into the corresponding square of the grid. A Delaunay triangulation of the generally rather few sites within each cell is constructed with the Guibas & Stolfi algorithm. Then the triangulations are merged, four by four, in a quadtree-like order.


Author(s):  
Rajan Gupta ◽  
Saibal K Pal

AbstractCOVID-19 is spreading really fast around the world. The current study describes the situation of the outbreak of this disease in India and predicts the number of cases expected to rise in India. The study also discusses the regional analysis of Indian states and presents the preparedness level of India in combating this outbreak. The study uses exploratory data analysis to report the current situation and uses time-series forecasting methods to predict the future trends. The data has been considered from the repository of John Hopkins University and covers up the time period from 30th January 2020 when the first case occurred in India till the end of 24th March 2020 when the Prime Minister of India declared a complete lockdown in the country for 21 days starting 25th March 2020. The major findings show that number of infected cases in India is rising quickly with the average infected cases per day rising from 10 to 73 from the first case to the 300th case. The current mortality rate for India stands around 1.9. Kerala and Maharashtra are the top two infected states in India with more than 100 infected cases reported in each state, respectively. A total of 25 states have reported at least one infected case, however only 8 of them have reported deaths due to COVID-19. The ARIMA model prediction shows that the infected cases in India may reach up to 700 thousands in next 30 days in worst case scenario while most optimistic scenario may restrict the numbers up to 1000-1200. Also, the average forecast by ARIMA model in next 30 days is around 7000 patients from the current numbers of 536. Based on the forecasting model by Holt’s linear trends, an expected 3 million people may get infected if control measures are not taken in the near future. This study will be useful for the key stakeholders like Government Officials and Medical Practitioners in assessing the trends for India and preparing a combat plan with stringent measures. Also, this study will be helpful for data scientists, statisticians, mathematicians and analytics professionals in predicting outbreak numbers with better accuracy.


2001 ◽  
Vol 11 (05) ◽  
pp. 555-572 ◽  
Author(s):  
OLIVIER DEVILLERS ◽  
PHILIPPE GUIGUE

The complexity of randomized incremental algorithms is analyzed with the assumption of a random order of the input. To guarantee this hypothesis, the n data have to be known in advance in order to be mixed what contradicts with the on-line nature of the algorithm. We present the shuffling buffer technique to introduce sufficient randomness to guarantee an improvement on the worst case complexity by knowing only k data in advance. Typically, an algorithm with O(n2) worst-case complexity and O(n) or O(n log n) randomized complexity has an [Formula: see text] complexity for the shuffling buffer. We illustrate this with binary search trees, the number of Delaunay triangles or the number of trapezoids in a trapezoidal map created during an incremental construction.


2020 ◽  
Author(s):  
Rajan Gupta ◽  
Saibal K Pal

COVID-19 is spreading really fast around the world. The current study describes the situation of the outbreak of this disease in India and predicts the number of cases expected to rise in India. The study also discusses the regional analysis of Indian states and presents the preparedness level of India in combating this outbreak. The study uses exploratory data analysis to report the current situation and uses time-series forecasting methods to predict the future trends. The data has been considered from the repository of John Hopkins University and covers up the time period from 30th January 2020 when the first case occurred in India till the end of 24th March 2020 when the Prime Minister of India declared a complete lockdown in the country for 21 days starting 25th March 2020. The major findings show that number of infected cases in India is rising quickly with the average infected cases per day rising from 10 to 73 from the first case to the 300th case. The current mortality rate for India stands around 1.9. Kerala and Maharashtra are the top two infected states in India with more than 100 infected cases reported in each state, respectively. A total of 25 states have reported at least one infected case, however only 8 of them have reported deaths due to COVID-19. The ARIMA model prediction shows that the infected cases in India may reach up to 700 thousands in next 30 days in worst case scenario while most optimistic scenario may restrict the numbers up to 1000-1200. Also, the average forecast by ARIMA model in next 30 days is around 7000 patients from the current numbers of 536. Based on the forecasting model by Holt’s linear trends, an expected 3 million people may get infected if control measures are not taken in the near future. This study will be useful for the key stakeholders like Government Officials and Medical Practitioners in assessing the trends for India and preparing a combat plan with stringent measures. Also, this study will be helpful for data scientists, statisticians, mathematicians and analytics professionals in predicting outbreak numbers with better accuracy.


2020 ◽  
Author(s):  
Antonio Monleon-Getino ◽  
Jaume Canela-Soler

AbstractBackground and objectivesSARS-CoV-2 is a new type of coronavirus that can affect people and causes respiratory disease, COVID-19. It is affecting the entire planet and we focus in Spain, where the first case was detected at the end of January 2020 and in recent weeks it has increased in many cases. We need predictive models in order to be efficient and take actions. The general goal of this work is present a new model of SARS-CoV-2 to predict different scenarios of accumulated cases in Spain.Material and methodsIn this short report is used a model proposed previously, based on a parametric model Weibull and in a the library BDSbiost3 developed in R to infer and predict different scenarios of the evolution of SARS-CoV-2 for the accumulated cases in Spain after the spread that affects Spain detected at the end of January of this year.ResultsIn the analyses presented, projective curves have been generated for the evolution of accumulated cases in which they reach about 4,000 cases or about 15,000 cases, for which the lines of the day in which the value for 90 will be reached can be seen vertically 90, 95 and 99% of the asymptote (maximum number of cases, from that day they will begin to descend or remain the same), that is why the vertical lines would indicate the brake of the disease. For the worst-case scenario, it takes 118, 126 or 142 days to reach the maximum number of cases (n = 15,000) to reach 90, 95 and 99% of the asymptote (maximum number of cases), respectively. This means translated in a time scale that in the worst case the virus will not stop its progress, in Spain, until summer 2020, hopefully before.Comments and conclusionsThis model could be used to plan the resources and see if the policies or means dedicated to the virus are slowing the progress of the virus or it is necessary to implement others that are more effective, and can also validate a method for future outbreaks of diseases such as these.


2008 ◽  
Author(s):  
Sonia Savelli ◽  
Susan Joslyn ◽  
Limor Nadav-Greenberg ◽  
Queena Chen

Author(s):  
D. V. Vaniukova ◽  
◽  
P. A. Kutsenkov ◽  

The research expedition of the Institute of Oriental studies of the Russian Academy of Sciences has been working in Mali since 2015. Since 2017, it has been attended by employees of the State Museum of the East. The task of the expedition is to study the transformation of traditional Dogon culture in the context of globalization, as well as to collect ethnographic information (life, customs, features of the traditional social and political structure); to collect oral historical legends; to study the history, existence, and transformation of artistic tradition in the villages of the Dogon Country in modern conditions; collecting items of Ethnography and art to add to the collection of the African collection of the. Peter the Great Museum (Kunstkamera, Saint Petersburg) and the State Museum of Oriental Arts (Moscow). The plan of the expedition in January 2020 included additional items, namely, the study of the functioning of the antique market in Mali (the “path” of things from villages to cities, which is important for attributing works of traditional art). The geography of our research was significantly expanded to the regions of Sikasso and Koulikoro in Mali, as well as to the city of Bobo-Dioulasso and its surroundings in Burkina Faso, which is related to the study of migrations to the Bandiagara Highlands. In addition, the plan of the expedition included organization of a photo exhibition in the Museum of the village of Endé and some educational projects. Unfortunately, after the mass murder in March 2019 in the village of Ogossogou-Pel, where more than one hundred and seventy people were killed, events in the Dogon Country began to develop in the worst-case scenario: The incessant provocations after that revived the old feud between the Pel (Fulbe) pastoralists and the Dogon farmers. So far, this hostility and mutual distrust has not yet developed into a full-scale ethnic conflict, but, unfortunately, such a development now seems quite likely.


2020 ◽  
Author(s):  
Ahmed Abdelmoaty ◽  
Wessam Mesbah ◽  
Mohammad A. M. Abdel-Aal ◽  
Ali T. Alawami

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination between the wind-thermal generators and the EVs in a virtual<br>power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy<br>prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the e?effectiveness of the proposed model in terms of the VPPO's profit. A comparison between the proposed model and the scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the production and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from<br>the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life scenarios.<br>


Sign in / Sign up

Export Citation Format

Share Document