scholarly journals On the Stability Problem of Equilibrium Discrete Planar Curves

Author(s):  
Yoshiki Jikumaru

AbstractWe study planar polygonal curves with the variational methods. We show a unified interpretation of discrete curvatures and the Steiner-type formula by extracting the notion of the discrete curvature vector from the first variation of the length functional. Moreover, we determine the equilibrium curves for the length functional under the area-constraint condition and study their stability.

2020 ◽  
Vol 51 (4) ◽  
pp. 313-332
Author(s):  
Firooz Pashaie

A well-known conjecture of Bang Yen-Chen says that the only biharmonic Euclidean submanifolds are minimal ones. In this paper, we consider an extended condition (namely, $L_1$-biharmonicity) on non-degenerate timelike hypersurfaces of the pseudo-Euclidean space $E_1^4$. A Lorentzian hypersurface $x: M_1^3\rightarrow\E_1^4$ is called $L_1$-biharmonic if it satisfies the condition $L_1^2x=0$, where $L_1$ is the linearized operator associated to the first variation of 2-th mean curvature vector field on $M_1^3$. According to the multiplicities of principal curvatures, the $L_1$-extension of Chen's conjecture is affirmed for Lorentzian hypersurfaces with constant ordinary mean curvature in pseudo-Euclidean space $E_1^4$. Additionally, we show that there is no proper $L_1$-biharmonic $L_1$-finite type connected orientable Lorentzian hypersurface in $E_1^4$.


2020 ◽  
Vol 8 ◽  
Author(s):  
Miguel A. Alejo ◽  
Luca Fanelli ◽  
Claudio Muñoz

In this note, we review stability properties in energy spaces of three important nonlinear Schrödinger breathers: Peregrine, Kuznetsov-Ma, and Akhmediev. More precisely, we show that these breathers are unstable according to a standard definition of stability. Suitable Lyapunov functionals are described, as well as their underlying spectral properties. As an immediate consequence of the first variation of these functionals, we also present the corresponding nonlinear ODEs fulfilled by these nonlinear Schrödinger breathers. The notion of global stability for each breather mentioned above is finally discussed. Some open questions are also briefly mentioned.


In the first part of this paper opportunity has been taken to make some adjustments in certain general formulae of previous papers, the necessity for which appeared in discussions with other workers on this subject. The general results thus amended are then applied to a general discussion of the stability problem including the effect of the trailing wake which was deliberately excluded in the previous paper. The general conclusion is that to a first approximation the wake, as usually assumed, has little or no effect on the reality of the roots of the period equation, but that it may introduce instability of the oscillations, if the centre of gravity of the element is not sufficiently far forward. During the discussion contact is made with certain partial results recently obtained by von Karman and Sears, which are shown to be particular cases of the general formulae. An Appendix is also added containing certain results on the motion of a vortex behind a moving cylinder, which were obtained to justify certain of the assumptions underlying the trail theory.


1989 ◽  
Vol 12 (4) ◽  
pp. 571-585
Author(s):  
E. Fachini ◽  
A. Maggiolo Schettini ◽  
G. Resta ◽  
D. Sangiorgi

We prove that the classes of languages accepted by systolic automata over t-ary trees (t-STA) are always either equal or incomparable if one varies t. We introduce systolic tree automata with base (T(b)-STA), a subclass of STA with interesting properties of modularity, and we give a necessary and sufficient condition for the equivalence between a T(b)-STA and a t-STA, for a given base b. Finally, we show that the stability problem for T(b)-ST A is decidible.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Chiara Guidi ◽  
Ali Maalaoui ◽  
Vittorio Martino

AbstractWe consider the coupled system given by the first variation of the conformal Dirac–Einstein functional. We will show existence of solutions by means of perturbation methods.


1970 ◽  
Vol 16 (1) ◽  
pp. 1-7 ◽  
Author(s):  
James Lucien Howland ◽  
John Albert Senez

2014 ◽  
Vol 608-609 ◽  
pp. 19-22
Author(s):  
Ping Xu ◽  
Jian Gang Yi

Hydraulic descaling system is the key device to ensure the surface quality of billet. However, traditional control methods lead to the stability problem in hydraulic descaling system. To solve the problem, the construction of the hydraulic descaling computer control system is studied, the working principle of the system is analyzed, and the high pressure water bench of hydraulic descaling is designed. Based on it, the corresponding computer control software is developed. The application shows that the designed system is stable in practice, which is helpful for enterprise production.


2003 ◽  
Vol 155 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Tarcı́sio M. Rocha Filho ◽  
Iram M. Gléria ◽  
Annibal Figueiredo

Sign in / Sign up

Export Citation Format

Share Document