Identifying curriculum content for a cross-specialty robotic-assisted surgery training program: a Delphi study

Author(s):  
Peter Hertz ◽  
Kim Houlind ◽  
Jan Jepsen ◽  
Lars Bundgaard ◽  
Pernille Jensen ◽  
...  
Author(s):  
Maria Castaldi ◽  
Mathias Palmer ◽  
Jorge Con ◽  
Ziad Abouezzi ◽  
Rifat Latifi ◽  
...  

Technology has had a dramatic impact on how diseases are diagnosed and treated. Although cut, sew, and tie remain the staples of surgical craft, new technical skills are required. While there is no replacement for live operative experience, training outside the operating room offers structured educational opportunities and stress modulation. A stepwise program for acquiring new technical skills required in robotic surgery involves three modules: ergonomic, psychomotor, and procedural. This is a prospective, educational research protocol aiming at evaluating the responsiveness of general surgery residents in Robotic-Assisted Surgery Training (RAST). Responsiveness is defined as change in performance over time. Performance is measured by the following content-valid metrics for each module. Module 1 proficiency in ergonomics includes: cart deploy, boom control, cart driving, camera port docking, targeting anatomy, flex joint, clearance joint and port nozzle adjusting, and routine and emergent undocking. Module 2 proficiency in psychomotor skills includes tissue handling, accuracy error, knot quality, and operating time. Module 3 proficiency in procedural skills prevents deviations from standardized sequential procedural steps in order to test length of specimen resection, angle for transection, vessel stump length post ligation, distance of anastomosis from critical landmarks, and proximal and distal resection margins. Resident responsiveness over time will be assessed comparing the results of baseline testing with final testing. Educational interventions will include viewing one instructional video prior to module commencement, response to module-specific multiple-choice questions, and individual weekly training sessions with a robotic instructor in the operating room. Residents will progress through modules upon successful final testing and will evaluate the educational environment with the Dundee Ready Educational Environment Measure (DREEM) inventory. The RAST program protocol outlined herein is an educational challenge with the primary endpoint to provide evidence that formal instruction has an impact on proficiency and safety in executing robotic skills.


Author(s):  
Wissam N. Raad ◽  
Adil Ayub ◽  
Chyun-Yin Huang ◽  
Landon Guntman ◽  
Sadiq S. Rehmani ◽  
...  

Objective Robotic-assisted surgery is increasingly being used in thoracic surgery. Currently, the Integrated Thoracic Surgery Residency Program lacks a standardized curriculum or requirement for training residents in robotic-assisted thoracic surgery. In most circumstances, because of the lack of formal residency training in robotic surgery, hospitals are requiring additional training, mentorship, and formal proctoring of cases before granting credentials to perform robotic-assisted surgery. Therefore, there is necessity for residents in Integrated Thoracic Surgery Residency Program to have early exposure and formal training on the robotic platform. We propose a curriculum that can be incorporated into such programs that would satisfy both training needs and hospital credential requirements. Methods We surveyed all 26 Integrated Thoracic Surgery Residency Program Directors in the United States. We also performed a PubMed literature search using the key word “robotic surgery training curriculum.” We reviewed various robotic surgery training curricula and evaluation tools used by urology, obstetrics gynecology, and general surgery training programs. We then designed a proposed curriculum geared toward thoracic Integrated Thoracic Surgery Residency Program adopted from our credentialing experience, literature review, and survey consensus. Results Of the 26 programs surveyed, we received 17 responses. Most Integrated Thoracic Surgery Residency Program directors believe that it is important to introduce robotic surgery training during residency. Our proposed curriculum is integrated during postgraduate years 2 to 6. In the preclinical stage postgraduate years 2 to 3, residents are required to complete introductory online modules, virtual reality simulator training, and in-house workshops. During clinical stage (postgraduate years 4–6), the resident will serve as a supervised bedside assistant and progress to a console surgeon. Each case will have defined steps that the resident must demonstrate competency. Evaluation will be based on standardized guidelines. Conclusions Expansion and utilization of robotic assistance in thoracic surgery have increased. Our proposed curriculum aims to enable Integrated Thoracic Surgery Residency Program residents to achieve competency in robotic-assisted thoracic surgery and to facilitate the acquirement of hospital privileges when they enter practice.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kate McBride ◽  
Daniel Steffens ◽  
Christina Stanislaus ◽  
Michael Solomon ◽  
Teresa Anderson ◽  
...  

Abstract Background A barrier to the uptake of robotic-assisted surgery (RAS) continues to be the perceived high costs. A lack of detailed costing information has made it difficult for public hospitals in particular to determine whether use of the technology is justified. This study aims to provide a detailed description of the patient episode costs and the contribution of RAS specific costs for multiple specialties in the public sector. Methods A retrospective descriptive costing review of all RAS cases undertaken at a large public tertiary referral hospital in Sydney, Australia from August 2016 to December 2018 was completed. This included RAS cases within benign gynaecology, cardiothoracic, colorectal and urology, with the total costs described utilizing various inpatient costing data, and RAS specific implementation, maintenance and consumable costs. Results Of 211 RAS patients, substantial variation was found between specialties with the overall median cost per patient being $19,269 (Interquartile range (IQR): $15,445 to $32,199). The RAS specific costs were $8828 (46%) made up of fixed costs including $4691 (24%) implementation and $2290 (12%) maintenance, both of which are volume dependent; and $1848 (10%) RAS consumable costs. This was in the context of 37% robotic theatre utilisation. Conclusions There is considerable variation across surgical specialties for the cost of RAS. It is important to highlight the different cost components and drivers associated with a RAS program including its dependence on volume and how it fits within funding systems in the public sector.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Luo ◽  
Fangfang Zheng ◽  
Haobo Zhang ◽  
Weiquan Zhu ◽  
Penghui He ◽  
...  

Abstract Background Natural orifice specimen extraction surgery for colorectal cancer has been introduced in order to reduce the abdominal incision, demonstrating major development potential in minimally invasive surgery. We are conducting this randomized controlled trial to assess whether robotic NOSES is non-inferior to traditional robotic-assisted surgery for patients with colorectal cancer in terms of primary and secondary outcomes. Method/design Accordingly, a prospective, open-label, randomized controlled, parallel-group, multicenter, and non-inferiority trial will be conducted to discuss the safety and efficacy of robotic natural orifice extraction surgery compared to traditional robotic-assisted surgery. Here, 550 estimated participants will be enrolled to have 80% power to detect differences with a one-sided significance level of 0.025 in consideration of the non-inferiority margin of 10%. The primary outcome is the incidence of surgical complications, which will be classified using the Clavien-Dindo system. Discussion This trial is expected to reveal whether robotic NOSES is non-inferior to traditional robotic-assisted surgery, which is of great significance in regard to the development of robotic NOSES for patients with colorectal cancer in the minimally invasive era. Furthermore, robotic NOSES is expected to exhibit superiority to traditional robotic-assisted surgery in terms of both primary and secondary outcomes. Trial registration ClinicalTrials.govNCT04230772. Registered on January 15, 2020.


Author(s):  
Falisha Kanji ◽  
Tara Cohen ◽  
Myrtede Alfred ◽  
Ashley Caron ◽  
Samuel Lawton ◽  
...  

The introduction of surgical technology into existing operating rooms (ORs) can place novel demands on staff and infrastructure. Despite the substantial physical size of the devices in robotic-assisted surgery (RAS), the workspace implications are rarely considered. This study aimed to explore the impact of OR size on the environmental causes of surgical flow disruptions (FDs) occurring during RAS. Fifty-six RAS procedures were observed at two academic hospitals between July 2019 and January 2021 across general, urologic, and gynecologic surgical specialties. A multiple regression analysis demonstrated significant effects of room size in the pre-docking phase (t = 2.170, df = 54, β = 0.017, p = 0.035) where the rate of FDs increased as room size increased, and docking phase (t = −2.488, df = 54, β = −0.017, p = 0.016) where the rate of FDs increased as room size decreased. Significant effects of site (pre-docking phase: p = 0.000 and docking phase: p = 0.000) were also demonstrated. Findings from this study demonstrate hitherto unrecognized spatial challenges involved with introducing surgical robots into the operating domain. While new technology may provide benefits towards patient safety, it is important to consider the needs of the technology prior to integration.


Author(s):  
Shunsuke Kasai ◽  
Hitoshi Hino ◽  
Akio Shiomi ◽  
Hiroyasu Kagawa ◽  
Shoichi Manabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document