Population-based studies reveal an additive role of type IV collagen variants in hematuria and albuminuria

Author(s):  
Moumita Barua ◽  
Andrew D. Paterson
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 29-29
Author(s):  
Veronica H. Flood ◽  
Abraham C. Schlauderaff ◽  
Paula M. Jacobi ◽  
Tricia L. Slobodianuk ◽  
Robert R. Montgomery ◽  
...  

Abstract Von Willebrand factor (VWF) plays a key role in coagulation by tethering platelets to injured subendothelium via binding sites for platelet glycoprotein Ib and collagen. The binding sites for types I and III collagen in the VWF A3 domain are well characterized, and defects in this region have been implicated in von Willebrand disease (VWD). Additional collagens present in the vasculature may also be involved in interactions with VWF. A VWF A1 sequence variation, p.R1399H, has been associated with decreased binding to type VI collagen, but the clinical significance of this observation remains unclear. Type IV collagen is a common component of the basement membrane and as such may be an important ligand for VWF. While some VWD testing utilizes types I or III collagen, current clinical testing does not include collagen IV or VI. To characterize the role of the VWF A1 domain in VWF-type IV collagen interactions, we generated several A1 domain variant human and/or murine recombinant VWF (rVWF) constructs including R1399H and several type 2M VWD variants localized to the same region (S1387I, Q1402P, and an 11 amino acid deletion mutant encompassing amino acids 1392-1402). These constructs were then expressed in HEK 293T cells. To further assess the role of the A1 domain, scanning alanine mutagenesis (SAM) of residues 1387 through 1412 was conducted. VWF antigen levels (VWF:Ag), collagen binding with type III (VWF:CB3), IV (VWF:CB4), or VI (VWF:CB6) collagen were determined, and multimer distribution was assessed for all recombinant VWF variants. The role of R1399H in the context of human rVWF was characterized initially. Although VWF:Ag, VWF:CB3, and multimer distribution were normal for R1399H compared to wild-type (WT VWF), VWF:CB4 was undetectable. To examine this effect in a mouse model, the R1399H variant was expressed in the context of murine rVWF and collagen binding was determined. Similar to the human variant, murine R1399H rVWF demonstrated significantly reduced binding to murine type IV collagen, at only 7% of the binding seen with WT murine rVWF. In order to examine the behavior of R1399H under shear conditions, either WT or R1399H murine rVWF DNA was hydrodynamically injected into the tail veins of VWF -/- mice to induce expression of the proteins; blood was drawn from the vena cava 24 hours later and then examined on the VenaFlux flow apparatus. VWF expression levels and multimer distribution were similar for the R1399H- and WT-injected mice. Under static conditions, the murine plasma-derived R1399H demonstrated decreased VWF:CB4, at only 16% of the levels seen with WT VWF. No defect was seen in VWF:CB3. Furthermore, when binding to type IV collagen was assessed under flow conditions by VenaFlux, platelet adhesion was significantly decreased in mice expressing R1399H VWF as compared to mice expressing WT VWF. When examining other A1 domain variants, Q1402P and del1392-1402 demonstrated absent VWF:CB4 while S1387I demonstrated a significant reduction in VWF:CB4 compared to WT VWF. All SAM VWF A1 domain variants demonstrated normal expression, multimerization, and VWF:CB3. However, type IV collagen binding was absent for R1392A, R1395A, R1399A, and K1406A and was reduced to less than 50% of WT VWF for Q1402A, K1405A, and K1407A. These residues map to an outside face of the VWF A1 domain crystal structure, and are likely the critical residues for VWF binding to type IV collagen. Taken together, these data demonstrate that the type IV collagen binding site localizes to a specific region of the VWF A1 domain. Mutations in this region of VWF may be clinically significant due to a defect in the ability of VWF to attract platelets to exposed type IV collagen which may contribute to bleeding symptoms seen in VWD. Disclosures: No relevant conflicts of interest to declare.


1991 ◽  
Vol 13 ◽  
pp. S155
Author(s):  
D Pateron ◽  
DJ Hartmann ◽  
F Mal ◽  
JC Trinchet ◽  
C Meicler ◽  
...  

2015 ◽  
Vol 95 (8) ◽  
pp. 872-885 ◽  
Author(s):  
Hirokazu Urushiyama ◽  
Yasuhiro Terasaki ◽  
Shinya Nagasaka ◽  
Mika Terasaki ◽  
Shinobu Kunugi ◽  
...  

Author(s):  
M. A. Popov ◽  
D. V. Shumakov ◽  
D. I. Zybin ◽  
L. E. Gurevich ◽  
V. E. Ashevskaya ◽  
...  

Currently, the analysis of the fibrosis severity during the restructuring of the surrounding extracellular matrix (ECM) is studied in most of the research works devoted to “cardiac remodeling”. At the same time, the role of the basal membrane of cardiomyocytes in heart diseases was not studied. The basal membrane of cardiomyocytes is a highly organized layer of the ECM which is located on the outer side of the sarcolemma. Degradation of ECM components is carried out by different types of matrix metalloproteinases (MMP), which have proteolytic activity and are actively involved in the process of ECM remodeling, destroying its components such as collagen, elastin, fibronectin, glycosaminoglycans and other structural components.Aim. To evaluate the ECM status in patients with coronary artery disease and its effect on left ventricular myocardial remodeling.Material and methods. Morphological and immunohistochemical (IHC) examination of left ventricular myocardial biopsies was performed in 16 patients undergoing left ventricular reconstruction in combination with coronary artery bypass grafting.Results. The IHC study revealed the accumulation of matrix metalloproteinase-9 in the cytoplasm of cardiomyocytes. This accumulation was combined with partial or complete destruction of the basal membranes (BM) of cardiomyocytes formed by type IV collagen.Conclusion. Type IV collagen destruction in basal membranes of left ventricular cardiomyocyteswasrevealed. It iscausedbytheactionofmatrixmetalloproteinase-9, which accumulates in the cell cytoplasm.


Toxicon ◽  
2020 ◽  
Vol 177 ◽  
pp. S51
Author(s):  
Navilla Apú ◽  
Aldo Rodrigues da Silva ◽  
Konstantinos Kalogeropoulos ◽  
Cristina Herrera ◽  
Erika Camacho ◽  
...  
Keyword(s):  

Development ◽  
1988 ◽  
Vol 102 (2) ◽  
pp. 339-347 ◽  
Author(s):  
P. Simon-Assmann ◽  
F. Bouziges ◽  
C. Arnold ◽  
K. Haffen ◽  
M. Kedinger

The production and deposition of extracellular matrix proteins and the cellular origin of type-IV collagen have been analysed immunocytochemically in cocultured or transplanted intestinal epithelial-mesenchymal cell associations. In the first experimental model, rat intestinal endodermal cells were cultured on top of confluent monolayers of rat intestinal or skin fibroblastic cells. Under these conditions, interstitial matrix and basement membrane proteins were deposited within the fibroblastic layer over the whole culture period; interactions between the epithelial cells and the fibroblastic cell population, whatever their organ of origin, were required for the production of the basement membrane. In addition, its formation was progressive as assessed by the shift of a spot-like labelling to a continuous linear pattern at the epithelial-mesenchymal interface, and paralleled epithelial cell differentiation. In the second experimental model, chick-rat epithelial-mesenchymal recombinants developed as intracoelomic grafts were used, and the immunocytochemical detection of a basement membrane protein, type-IV collagen, was performed with species-specific antibodies. The major role of the mesenchyme in the deposition of type-IV collagen is supported by the fact that anti-chick but not anti-mammalian antibodies stained this antigen in chick mesenchyme-rat endoderm recombinants. These observations emphasize the role of tissue interactions in the formation of a basement membrane and show that the mesenchymal compartment is the principal endogenous source of type-IV collagen.


2005 ◽  
Vol 20 (8) ◽  
pp. 1559-1565 ◽  
Author(s):  
Masato Kimura ◽  
Mitsuko Asano ◽  
Katsushige Abe ◽  
Masanobu Miyazaki ◽  
Takayuki Suzuki ◽  
...  

2010 ◽  
Vol 113 (4) ◽  
pp. 826-834 ◽  
Author(s):  
Fatima A. Sehba ◽  
Rowena Flores ◽  
Artur Muller ◽  
Victor Friedrich ◽  
Jiang-Fan Chen ◽  
...  

Object The role of adenosine A2A receptors in the early vascular response after subarachnoid hemorrhage (SAH) is unknown. In other forms of cerebral ischemia both activation and inhibition of A2A receptors is reported to be beneficial. However, these studies mainly used pharmacological receptor modulation, and most of the agents available exhibit low specificity. The authors used adenosine A2A receptor knockout mice to study the role of A2A receptors in the early vascular response to SAH. Methods Subarachnoid hemorrhage was induced in wild-type mice (C57BL/6) and A2A receptor knockout mice by endovascular puncture. Cerebral blood flow, intracranial pressure, and blood pressure were recorded, and cerebral perfusion pressure was deduced. Animals were sacrificed at 1, 3, or 6 hours after SAH or sham surgery. Coronal brain sections were immunostained for Type IV collagen, the major protein of the basal lamina. The internal diameter of major cerebral arteries and the area fraction of Type IV collagen–positive microvessels (< 100 μm) were determined. Results The initial increase in intracranial pressure and decrease in cerebral perfusion pressure at SAH induction was similar in both types of mice, but cerebral blood flow decline was significantly smaller in A2A receptor knockout mice as compared with wild-type cohorts. The internal diameter of major cerebral vessels decreased progressively after SAH. The extent of diameter reduction was significantly less in A2A receptor knockout mice than in wild-type mice. Type IV collagen immunostaining decreased progressively after SAH. This decrease was significantly less in A2A receptor knockout mice than in wild-type mice. Conclusions These results demonstrate that global inactivation of A2A receptors decreases the intensity of the early vascular response to SAH. Early inhibition of A2A receptors after SAH might reduce cerebral injury.


1993 ◽  
Vol 100 (5) ◽  
pp. 640-647 ◽  
Author(s):  
Takafumi Etoh ◽  
Luc Thomas ◽  
Cecile Pastel-Levy ◽  
Robert B. Colvin ◽  
Martin C. Mihm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document