VWF Interaction With Type IV Collagen Is Mediated Through Critical VWF A1 Domain Residues

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 29-29
Author(s):  
Veronica H. Flood ◽  
Abraham C. Schlauderaff ◽  
Paula M. Jacobi ◽  
Tricia L. Slobodianuk ◽  
Robert R. Montgomery ◽  
...  

Abstract Von Willebrand factor (VWF) plays a key role in coagulation by tethering platelets to injured subendothelium via binding sites for platelet glycoprotein Ib and collagen. The binding sites for types I and III collagen in the VWF A3 domain are well characterized, and defects in this region have been implicated in von Willebrand disease (VWD). Additional collagens present in the vasculature may also be involved in interactions with VWF. A VWF A1 sequence variation, p.R1399H, has been associated with decreased binding to type VI collagen, but the clinical significance of this observation remains unclear. Type IV collagen is a common component of the basement membrane and as such may be an important ligand for VWF. While some VWD testing utilizes types I or III collagen, current clinical testing does not include collagen IV or VI. To characterize the role of the VWF A1 domain in VWF-type IV collagen interactions, we generated several A1 domain variant human and/or murine recombinant VWF (rVWF) constructs including R1399H and several type 2M VWD variants localized to the same region (S1387I, Q1402P, and an 11 amino acid deletion mutant encompassing amino acids 1392-1402). These constructs were then expressed in HEK 293T cells. To further assess the role of the A1 domain, scanning alanine mutagenesis (SAM) of residues 1387 through 1412 was conducted. VWF antigen levels (VWF:Ag), collagen binding with type III (VWF:CB3), IV (VWF:CB4), or VI (VWF:CB6) collagen were determined, and multimer distribution was assessed for all recombinant VWF variants. The role of R1399H in the context of human rVWF was characterized initially. Although VWF:Ag, VWF:CB3, and multimer distribution were normal for R1399H compared to wild-type (WT VWF), VWF:CB4 was undetectable. To examine this effect in a mouse model, the R1399H variant was expressed in the context of murine rVWF and collagen binding was determined. Similar to the human variant, murine R1399H rVWF demonstrated significantly reduced binding to murine type IV collagen, at only 7% of the binding seen with WT murine rVWF. In order to examine the behavior of R1399H under shear conditions, either WT or R1399H murine rVWF DNA was hydrodynamically injected into the tail veins of VWF -/- mice to induce expression of the proteins; blood was drawn from the vena cava 24 hours later and then examined on the VenaFlux flow apparatus. VWF expression levels and multimer distribution were similar for the R1399H- and WT-injected mice. Under static conditions, the murine plasma-derived R1399H demonstrated decreased VWF:CB4, at only 16% of the levels seen with WT VWF. No defect was seen in VWF:CB3. Furthermore, when binding to type IV collagen was assessed under flow conditions by VenaFlux, platelet adhesion was significantly decreased in mice expressing R1399H VWF as compared to mice expressing WT VWF. When examining other A1 domain variants, Q1402P and del1392-1402 demonstrated absent VWF:CB4 while S1387I demonstrated a significant reduction in VWF:CB4 compared to WT VWF. All SAM VWF A1 domain variants demonstrated normal expression, multimerization, and VWF:CB3. However, type IV collagen binding was absent for R1392A, R1395A, R1399A, and K1406A and was reduced to less than 50% of WT VWF for Q1402A, K1405A, and K1407A. These residues map to an outside face of the VWF A1 domain crystal structure, and are likely the critical residues for VWF binding to type IV collagen. Taken together, these data demonstrate that the type IV collagen binding site localizes to a specific region of the VWF A1 domain. Mutations in this region of VWF may be clinically significant due to a defect in the ability of VWF to attract platelets to exposed type IV collagen which may contribute to bleeding symptoms seen in VWD. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (1) ◽  
pp. 214-222 ◽  
Author(s):  
Agata A. Nowak ◽  
Kevin Canis ◽  
Anne Riddell ◽  
Michael A. Laffan ◽  
Thomas A. J. McKinnon

AbstractWe have examined the effect of the O-linked glycan (OLG) structures of VWF on its interaction with the platelet receptor glycoprotein Ibα. The 10 OLGs were mutated individually and as clusters (Clus) on either and both sides of the A1 domain: Clus1 (N-terminal side), Clus2 (C-terminal side), and double cluster (DC), in both full-length-VWF and in a VWF construct spanning D′ to A3 domains. Mutations did not alter VWF secretion by HEK293T cells, multimeric structure, or static collagen binding. The T1255A, Clus1, and DC variants caused increased ristocetin-mediated GPIbα binding to VWF. Platelet translocation rate on OLG mutants was increased because of reduced numbers of GPIbα binding sites but without effect on bond lifetime. In contrast, OLG mutants mediated increased platelet capture on collagen under high shear stress that was associated with increased adhesion of these variants to the collagen under flow. These findings suggest that removal of OLGs increases the flexibility of the hinge linker region between the D3 and A1 domain, facilitating VWF unfolding by shear stress, thereby enhancing its ability to bind collagen and capture platelets. These data demonstrate an important functional role of VWF OLGs under shear stress conditions.


Haematologica ◽  
2019 ◽  
Vol 105 (11) ◽  
pp. 2631-2638 ◽  
Author(s):  
Kazuya Sakai ◽  
Tatsuhiko Someya ◽  
Kaori Harada ◽  
Hideo Yagi ◽  
Taei Matsui ◽  
...  

von Willebrand factor (VWF) is a blood glycoprotein that plays an important role in platelet thrombus formation through interaction between its A1 domain and platelet glycoprotein Ib. ARC1779, an aptamer to the VWF A1 domain, was evaluated in a clinical trial for acquired thrombotic thrombocytopenic purpura (aTTP). Subsequently, caplacizumab, an anti-VWF A1 domain nanobody, was approved for aTTP in Europe and the United States. We recently developed a novel DNA aptamer, TAGX-0004, to the VWF A1 domain; it contains an artificial base and demonstrates high affinity for VWF. To compare the effects of these three agents on VWF A1, their ability to inhibit ristocetin- or botrocetin-induced platelet aggregation under static conditions was analyzed, and the inhibition of thrombus formation under high shear stress was investigated in a microchip flow chamber system. In both assays, TAGX-0004 showed stronger inhibition than ARC1779, and had comparable inhibitory effects to caplacizumab. The binding sites of TAGX-0004 and ARC1779 were analyzed with surface plasmon resonance performed using alanine scanning mutagenesis of the VWF A1 domain. An electrophoretic mobility shift assay showed that R1395 and R1399 in the A1 domain bound to both aptamers. R1287, K1362, and R1392 contributed to ARC1779 binding, and F1366 was essential for TAGX-0004 binding. Surface plasmon resonance analysis of the binding sites of caplacizumab identified five amino acids in the VWF A1 domain (K1362, R1392, R1395, R1399, and K1406). These results suggested that TAGX-0004 possessed better pharmacological properties than caplacizumab in vitro and might be similarly promising for aTTP treatment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2213-2213
Author(s):  
Thomas A J McKinnon ◽  
Agata Anna Nowak ◽  
Alina Hua ◽  
Carolyn Millar ◽  
Michael Laffan

Abstract Abstract 2213 Von Willebrand Factor (VWF) binds to exposed sub-endothelial collagen at sites of vessel injury principally via its A3 domain, although some evidence suggests that the A1 domain can compensate for the A3 domain under flow conditions if the A3 domain is absent or non-functional. Recently, several naturally occurring Von Willebrand disease-causing mutations have been indentified in the A3 domain; S1731T, W1745C, S1783, H1786D and most recently M1761K, as well as one mutation in the A1 domain (I1343V) all of which have defective collagen binding. While the collagen binding function of these mutations has been assessed under static conditions it remains to be established if these affect collagen binding under shear stress. In the present study the collagen binding mutants were expressed in HEK293T cells and collagen binding function determined using an in vitro flow assay. All of the mutations were expressed at similar levels to wild type (wt) VWF and demonstrated normal multimeric patterns and binding to GPIbα under static conditions. As expected, collagen binding analysis under static conditions confirmed the collagen binding defect of all the mutants, with reduced or abolished binding to both collagens type I and III for all the mutants except S1731T which demonstrated normal binding to collagen type III and slightly reduced binding to collagen type I. Analysis of platelet capture under flow conditions confirmed that all the mutants were able to capture platelets similarly to wtVWF. Analysis of VWF mediated platelet capture to a collagen surface under flow conditions confirmed the phenotype of the collagen binding mutants. With the exception of S1731T, which demonstrated normal platelet capture on both collagens, none of the mutants were able to bind to collagen type I or III under flow conditions, or mediate platelet capture at high shear stress. The collagen binding function of these mutants under flow was partially restored when co-expressed with wtVWF. Interestingly, in contrast to a previous study, a VWF variant lacking the A3 domain (VWF-ΔA3) failed to bind to collagen under shear stress and was not able to mediate platelet capture to collagen. Together these data confirm that the major collagen binding site in VWF is located in the A3 domain and demonstrate that collagen binding mutations affect VWF mediated platelet capture under shear stress. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 98 (07) ◽  
pp. 178-185 ◽  
Author(s):  
Tímea Szántó ◽  
Ágota Schlammadinger ◽  
Stephanie Staelens ◽  
Simon De Meyer ◽  
Kathleen Freson ◽  
...  

SummaryMany polymorphisms in vonWillebrand factor (VWF) have been reported and their association with VWF plasma levels or cardiovascular diseases has been investigated. The aim of this study was to examine whether the amino acid polymorphis mA/T1381 in the VWF A1-domain would affect VWF binding to platelet GPIbα. Sixty-one normal individuals were genotyped at the A/T1381 locus. Twenty-one A/A1381 homozygotes, 30 A/T1381 heterozygotes and 10 T/T1381 homozygotes were identified. Remarkably, when compared to VWF of A/T1381 and A/A1381 individuals, VWF of individuals carrying the T/T1381 variant showed an increased affinity for its platelet receptor GPIbα under static conditions, as reflected by an increased sensitivity to low concentrations of ristocetin or botrocetin. In addition, also the rVWF-T1381 demonstrated a higher affinity for GPIbα than rVWF-A1381. Interestingly, this enhanced affinity of the T/T variant over the A/T and A/A variant was, however, too subtle to affect platelet adhesion under physiological flow conditions, which fully corroborates the normal haemostatic phenotype of all individuals. We demonstrate that the VWF A/T1381 polymorphism plays an important role in inter-individual variability of the affinity of VWF for GPIbα, with T/T variants having a higher affinity than A/A and A/T variants, at least under static conditions in vitro. Further genetic linkage and association studies are necessary to establish whether the A/T1381 polymorphism could correlate with an increased risk of thrombotic events.


Blood ◽  
1993 ◽  
Vol 82 (6) ◽  
pp. 1884-1890 ◽  
Author(s):  
K Iwabuchi ◽  
I Nagaoka ◽  
A Someya ◽  
T Yamashita

Abstract Guinea pig neutrophils adhered to adherence-inhibiting factor (AIF)- coated plastic; the adherence was completely inhibited by the addition of AIF, but partly inhibited by type IV collagen. Binding of 125I- labeled AIF to neutrophils was inhibited by unlabeled AIF, but partly inhibited by type IV collagen. Scatchard analysis showed that neutrophils have two classes of binding sites for AIF, high-affinity binding sites (kd = 5.0 pmol/L) numbering 500 per cell and low-affinity binding sites (kd = 860 pmol/L) numbering 6,400 per cell. Type IV collagen increased the kd of low-affinity binding sites. We have isolated and characterized the AIF-binding sites. We have isolated and characterized the AIF-binding proteins. Using AIF affinity chromatography, the radioactive fraction containing six proteins of molecular mass 45, 63, 87, 90 to 105, 145, and 195 Kd was isolated from 125I surface-labeled neutrophil extracts. This radioactive fraction was further separated into two fractions using type IV collagen affinity chromatography, ie, one fraction was adsorbed on the type IV collagen column and contained the 45-, 63-, and 87-Kd proteins, whereas another fraction was not adsorbed on the column and contained the 45-, 63-, 90- to 105-, 145-, and 195-Kd proteins. To isolate the type IV collagen- binding proteins, 125I surface-labeled neutrophil extracts were applied to a type IV collagen-Sepharose column; the isolated radioactive fraction contained the 45-, 63-, and 87-Kd proteins and bound to an AIF- Sepharose column. Taken together, these results suggest that the AIF- binding proteins, which bind to type IV collagen, are the type IV collagen-binding proteins of neutrophils.


Blood ◽  
1993 ◽  
Vol 82 (6) ◽  
pp. 1884-1890
Author(s):  
K Iwabuchi ◽  
I Nagaoka ◽  
A Someya ◽  
T Yamashita

Guinea pig neutrophils adhered to adherence-inhibiting factor (AIF)- coated plastic; the adherence was completely inhibited by the addition of AIF, but partly inhibited by type IV collagen. Binding of 125I- labeled AIF to neutrophils was inhibited by unlabeled AIF, but partly inhibited by type IV collagen. Scatchard analysis showed that neutrophils have two classes of binding sites for AIF, high-affinity binding sites (kd = 5.0 pmol/L) numbering 500 per cell and low-affinity binding sites (kd = 860 pmol/L) numbering 6,400 per cell. Type IV collagen increased the kd of low-affinity binding sites. We have isolated and characterized the AIF-binding sites. We have isolated and characterized the AIF-binding proteins. Using AIF affinity chromatography, the radioactive fraction containing six proteins of molecular mass 45, 63, 87, 90 to 105, 145, and 195 Kd was isolated from 125I surface-labeled neutrophil extracts. This radioactive fraction was further separated into two fractions using type IV collagen affinity chromatography, ie, one fraction was adsorbed on the type IV collagen column and contained the 45-, 63-, and 87-Kd proteins, whereas another fraction was not adsorbed on the column and contained the 45-, 63-, 90- to 105-, 145-, and 195-Kd proteins. To isolate the type IV collagen- binding proteins, 125I surface-labeled neutrophil extracts were applied to a type IV collagen-Sepharose column; the isolated radioactive fraction contained the 45-, 63-, and 87-Kd proteins and bound to an AIF- Sepharose column. Taken together, these results suggest that the AIF- binding proteins, which bind to type IV collagen, are the type IV collagen-binding proteins of neutrophils.


Blood ◽  
2014 ◽  
Vol 124 (11) ◽  
pp. 1799-1807 ◽  
Author(s):  
Yasuaki Shida ◽  
Natalia Rydz ◽  
David Stegner ◽  
Christine Brown ◽  
Jeffrey Mewburn ◽  
...  

Key PointsThe robustness of the VWF:collagen-binding assay is confirmed in a comprehensive evaluation of VWD collagen-binding defects. Collagen binding by VWF, GPVI, and α2β1 have major albeit overlapping functions in primary hemostasis.


1998 ◽  
Vol 79 (01) ◽  
pp. 211-216 ◽  
Author(s):  
Lysiane Hilbert ◽  
Claudine Mazurier ◽  
Christophe de Romeuf

SummaryType 2B of von Willebrand disease (vWD) refers to qualitative variants with increased affinity of von Willebrand factor (vWF) for platelet glycoprotein Ib (GPIb). All the mutations responsible for type 2B vWD have been located in the A1 domain of vWF. In this study, various recombinant von Willebrand factors (rvWF) reproducing four type 2B vWD missense mutations were compared to wild-type rvWF (WT-rvWF) for their spontaneous binding to platelets and their capacity to induce platelet activation and aggregation. Our data show that the multimeric pattern of each mutated rvWF is similar to that of WT-rvWF but the extent of spontaneous binding and the capacity to induce platelet activation and aggregation are more important for the R543Q and V553M mutations than for the L697V and A698V mutations. Both the binding of mutated rvWFs to platelets and platelet aggregation induced by type 2B rvWFs are inhibited by monoclonal anti-GPIb and anti-vWF antibodies, inhibitors of vWF binding to platelets in the presence of ristocetin, as well as by aurin tricarboxylic acid. On the other hand, EDTA and a monoclonal antibody directed against GPIIb/IIIa only inhibit platelet aggregation. Furthermore, the incubation of type 2B rvWFs with platelets, under stirring conditions, results in the decrease in high molecular weight vWF multimers in solution, the extent of which appears correlated with that of plasma vWF from type 2B vWD patients harboring the corresponding missense mutation. This study supports that the binding of different mutated type 2B vWFs onto platelet GPIb induces various degrees of platelet activation and aggregation and thus suggests that the phenotypic heterogeneity of type 2B vWD may be related to the nature and/or location of the causative point mutation.


1991 ◽  
Vol 65 (05) ◽  
pp. 608-617 ◽  
Author(s):  
Joseph A Chinn ◽  
Thomas A Horbett ◽  
Buddy D Ratner

SummaryThe role of fibrinogen in mediating platelet adhesion to polymers exposed to blood plasma was studied by comparison of the effect of plasma dilution on fibrinogen adsorption and platelet adhesion, and by the use of coagulation factor deficient plasmas. Polyetherurethane substrates were first preadsorbed with dilute plasma, then contacted with washed platelets suspended in a modified, apyrase containing Tyrode’s buffer. Platelet adhesion was studied under static conditions in Multiwell dishes, and also under shearing conditions using a parallel plate perfusion chamber. Fibrinogen adsorption and platelet adhesion were measured using 125I radiolabeled baboon fibrinogen and min radiolabeled baboon platelets, respectively. Surfaces were characterized by electron spectroscopy for chemical analysis (ESCA).When fibrinogen adsorption to Biomer was measured after 2 h contact with a series of dilute plasma solutions under static conditions, a peak in adsorption was observed from 0.26% plasma, i.e., adsorption was greater from 0.26% plasma than from either more or less dilute plasma. A peak in subsequent platelet adhesion to the plasma preadsorbed surfaces, measured after 2 h static incubation with washed platelets, was also observed but occurred on Biomer preadsorbed with 1.0% plasma.When fibrinogen adsorption was measured after 5 min contact under shearing conditions, the fibrinogen adsorption peak occurred on surfaces that had been exposed to 1.0% plasma. A peak in platelet adhesion to these preadsorbed surfaces, measured after 5 min contact with the platelet suspensions under shearing conditions, was observed on Biomer preadsorbed with 0.1% plasma. Shifts between the positions of the peaks in protein adsorption and platelet adhesion occurred on other polymers tested as well.Platelet adhesion was almost completely inhibited when baboon and human plasmas lacking fibrinogen (i. e., serum, heat defibrinogenated plasma, and congenitally afibrinogénémie plasma) were used. Platelet adhesion was restored to near normal when exogenous fibrinogen was added to fibrinogen deficient plasmas. Adhesion was also inhibited completely when a monoclonal antibody directed against the glycoprotein IIb/IIIa complex was added to the platelet suspension. Platelet adhesion to surfaces preadsorbed to von Willebrand factor deficient plasma was the same as to surfaces preadsorbed with normal plasma.While it appears that surface bound fibrinogen does mediate the initial attachment of platelets to Biomer, the observation that the fibrinogen adsorption and platelet adhesion maxima do not coincide exactly also suggests that the degree of subsequent platelet adhesion is dictated not only by the amount of surface bound fibrinogen but also by its conformation.


Sign in / Sign up

Export Citation Format

Share Document