Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees

Trees ◽  
2004 ◽  
Vol 19 (3) ◽  
pp. 296-304 ◽  
Author(s):  
Sandra J. Bucci ◽  
Guillermo Goldstein ◽  
Frederick C. Meinzer ◽  
Augusto C. Franco ◽  
Paula Campanello ◽  
...  
2000 ◽  
Vol 40 (5) ◽  
pp. 687 ◽  
Author(s):  
A. L. Bernardi

The water potentials of canola branches and leaves were compared using a pressure chamber to determine whether they produced similar results. This study also investigated the magnitude of errors in the water status of canola resulting from re-cutting the branches, and the effects of delaying readings. The use of branches containing pods or pods and flowers/buds gave very good correlation with leaves. As this is the area of greatest photosynthesis and transpiration from mid-flowering, it provides an easily obtainable source material close to the main growth areas to measure plant water potential. Storage of both leaves and stems before measurement is an acceptable procedure if a large number of samples are required to be completed or portable equipment is not available provided precautions are taken to prevent moisture loss. Re-cutting the branch leads to lower water potential and should be avoided.


2011 ◽  
Vol 219-220 ◽  
pp. 1440-1444
Author(s):  
Zong Guo Zhou ◽  
Yin Xia Lou ◽  
Jian Chu

For the implementation of precision irrigation (PI), it is most important to measure precisely plant water potential. The traditional measuring instruments still can not meet the need for continuous automatic detection of plant water potential, and have difficulty detecting living plant water potential. Plant water potential soft- sensing is one of the ways worth exploring. The first thing we should think about is the accuracy of the data. Filter the information of plant water potential acquired by the detecting system and further analyze this information to discover the change rules on the plant water potential.


2011 ◽  
Vol 47 (1) ◽  
pp. 27-51 ◽  
Author(s):  
M. K. V. CARR

SUMMARYThe results of research on the water relations and irrigation needs of coconut are collated and summarized in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information on the centres of origin and production of coconut and on crop development processes is followed by reviews of plant water relations, crop water use and water productivity, including drought mitigation. The majority of the recent research published in the international literature has been conducted in Brazil, Kerala (South India) and Sri Lanka, and by CIRAD (France) in association with local research organizations in a number of countries, including the Ivory Coast. The unique vegetative structure of the palm (stem and leaves) together with the long interval between flower initiation and the harvesting of the mature fruit (44 months) mean that causal links between environmental factors (especially water) are difficult to establish. The stomata play an important role in controlling water loss, whilst the leaf water potential is a sensitive indicator of plant water status. Both stomatal conductance and leaf water potential are negatively correlated with the saturation deficit of the air. Although roots extend to depths >2 m and laterally >3 m, the density of roots is greatest in the top 0–1.0 m soil, and laterally within 1.0–1.5 m of the trunk. In general, dwarf cultivars are more susceptible to drought than tall ones. Methods of screening for drought tolerance based on physiological traits have been proposed. The best estimates of the actual water use (ETc) of mature palms indicate representative rates of about 3 mm d−1. Reported values for the crop coefficient (Kc) are variable but suggest that 0.7 is a reasonable estimate. Although the sensitivity of coconut to drought is well recognized, there is a limited amount of reliable data on actual yield responses to irrigation although annual yield increases (50%) of 20–40 nuts palm−1 (4–12 kg copra, cultivar dependent) have been reported. These are only realized in the third and subsequent years after the introduction of irrigation applied at a rate equivalent to about 2 mm d−1 (or 100 l palm−1 d−1) at intervals of up to one week. Irrigation increases female flower production and reduces premature nut fall. Basin irrigation, micro-sprinklers and drip irrigation are all suitable methods of applying water. Recommended methods of drought mitigation include the burial of husks in trenches adjacent to the plant, mulching and the application of common salt (chloride ions). An international approach to addressing the need for more information on water productivity is recommended.


2020 ◽  
Vol 40 (4) ◽  
pp. 425-432
Author(s):  
Matthew Lanning ◽  
Lixin Wang ◽  
Kimberly A Novick

Abstract Accurate understanding of plant responses to water stress is increasingly important for quantification of ecosystem carbon and water cycling under future climates. Plant water-use strategies can be characterized across a spectrum of water stress responses, from tight stomatal control (isohydric) to distinctly less stomatal control (anisohydric). A recent and popular classification method of plant water-use strategies utilizes the regression slope of predawn and midday leaf water potentials, σ, to reflect the coupling of soil water availability (predawn leaf water potential) and stomatal dynamics (daily decline in leaf water potential). This type of classification is important in predicting ecosystem drought response and resiliency. However, it fails to explain the relative stomatal responses to drought of Acer sacharrum and Quercus alba, improperly ranking them on the spectrum of isohydricity. We argue this inconsistency may be in part due to the cuticular conductance of different species. We used empirical and modeling evidence to show that plants with more permeable cuticles are more often classified as anisohydric; the σ values of those species were very well correlated with measured cuticular permeance. Furthermore, we found that midday leaf water potential in species with more permeable cuticles would continue to decrease as soils become drier, but not in those with less permeable cuticles. We devised a diagnostic parameter, Γ, to identify circumstances where the impact of cuticular conductance could cause species misclassification. The results suggest that cuticular conductance needs to be considered to better understand plant water-use strategies and to accurately predict forest responses to water stress under future climate scenarios.


2021 ◽  
Vol 118 (23) ◽  
pp. e2008276118
Author(s):  
Piyush Jain ◽  
Weizhen Liu ◽  
Siyu Zhu ◽  
Christine Yao-Yun Chang ◽  
Jeff Melkonian ◽  
...  

Leaf water potential is a critical indicator of plant water status, integrating soil moisture status, plant physiology, and environmental conditions. There are few tools for measuring plant water status (water potential) in situ, presenting a critical barrier for developing appropriate phenotyping (measurement) methods for crop development and modeling efforts aimed at understanding water transport in plants. Here, we present the development of an in situ, minimally disruptive hydrogel nanoreporter (AquaDust) for measuring leaf water potential. The gel matrix responds to changes in water potential in its local environment by swelling; the distance between covalently linked dyes changes with the reconfiguration of the polymer, leading to changes in the emission spectrum via Förster Resonance Energy Transfer (FRET). Upon infiltration into leaves, the nanoparticles localize within the apoplastic space in the mesophyll; they do not enter the cytoplasm or the xylem. We characterize the physical basis for AquaDust’s response and demonstrate its function in intact maize (Zea mays L.) leaves as a reporter of leaf water potential. We use AquaDust to measure gradients of water potential along intact, actively transpiring leaves as a function of water status; the localized nature of the reporters allows us to define a hydraulic model that distinguishes resistances inside and outside the xylem. We also present field measurements with AquaDust through a full diurnal cycle to confirm the robustness of the technique and of our model. We conclude that AquaDust offers potential opportunities for high-throughput field measurements and spatially resolved studies of water relations within plant tissues.


2021 ◽  
Author(s):  
Maria Marin ◽  
Deborah S Feeney ◽  
Lawrie K Brown ◽  
Muhammad Naveed ◽  
Siul Ruiz ◽  
...  

<p>Root hairs represent an attractive target for future crop breeding, to improve resource use efficiency and stress tolerance. Most studies investigating root hairs have focused on plant tolerance to phosphorus deficiency and rhizosheath formation under controlled conditions. However, data on the interplay between root hairs and open-field systems, under contrasting soils and climate conditions, are limited. Although root hairs and rhizosphere are assumed to play a key role in regulating plant water relations, their effect on plant water uptake has been rarely investigated. As such, this study aimed to experimentally elucidate some of the impacts that root hairs have on plant performance under field conditions and water deficit. A field experiment was set up in Scotland for two consecutive years, in 2017 (a typical year) and 2018 (the driest growing season ever recorded at this site), under different soil textures (i.e., clay loam vs. sandy loam). Five barley (Hordeum vulgare) genotypes exhibiting variation in root hair length and density were used in the study. Measurements of root hair density, length and its correlation with rhizosheath weight highlighted trait robustness in the field under variable environmental conditions. Root hairs did not confer a notable advantage to barley under optimal conditions, but under soil water deficit root hairs enhanced plant water status and stress tolerance. This resulted in less negative leaf water potential and lower leaf abscisic acid concentration, while promoting shoot phosphorus accumulation. Specifically, minimum leaf water potential differed significantly (P = 0.021) between the wild type (-1.43 MPa) and its hairless mutant (-1.76 MPa) grown in clay loam, with the mutant exhibiting greater water stress. In agreement with leaf water potential measurements, at the peak of water stress, leaf abscisic acid concentration was significantly (P = 0.023) greater for the hairless mutant (394 ng g<sup>-1</sup>) than the wild type (250 ng g<sup>-1</sup>) grown in clay loam soil. Under water deficit conditions, in clay loam soil, shoot phosphorus accumulation in the wild type (2.49 mg P shoot<sup>-1</sup>) was over twice that in the hairless mutant (1.10 mg P shoot<sup>-1</sup>). Furthermore, the presence of root hairs did not decrease yield under optimal conditions, while root hairs enhanced yield stability under drought. While yield of the hairless mutant significantly (P = 0.012) decreased from 2017 to 2018 in both clay (-26%) and sandy (-33%) loam soils, no significant differences were found between years in the yield of the wild type. Therefore, selecting for beneficial root hair traits can enhance yield stability without diminishing yield potential, overcoming the breeder’s dilemma of trying to simultaneously enhance both productivity and resilience. To our knowledge, the present findings provide the first evidence of the effect of root hairs under drought in open field conditions (i.e., real agricultural system). Therefore, along with the well-recognized role for P uptake, maintenance or enhancement of root hairs can represent a key trait for breeding the next generation of crops for improved drought tolerance in relation to climate change.</p>


2020 ◽  
Author(s):  
Piyush Jain ◽  
Weizhen Liu ◽  
Siyu Zhu ◽  
Jeff Melkonian ◽  
Duke Pauli ◽  
...  

AbstractLeaf water potential is a critical indicator of plant water status, integrating soil moisture status, plant physiology, and environmental conditions. There are few tools for measuring plant water status (water potential) in situ, presenting a critical barrier for the development of appropriate phenotyping (measurement) methods for crop development and modeling efforts aimed at understanding water transport in plants. Here, we present the development of an in situ, minimally-disruptive hydrogel nanoreporter (AquaDust) for measuring leaf water potential. The gel matrix responds to changes in water potential in its local environment by swelling; the distance between covalently linked dyes changes with the reconfiguration of the polymer, leading to changes in the emission spectrum via Fluorescence Resonance Energy Transfer (FRET). Upon infiltration into leaves, the nanoparticles localize within the apoplastic space in the mesophyll; they do not enter the cytoplast or the xylem. We characterize the physical basis for AquaDust’s response and demonstrate its function in intact maize (Zea mays L.) leaves as a reporter of leaf water potential. We use AquaDust to measure gradients of water potential along intact, actively transpiring leaves as a function of water status; the localized nature of the reporters allows us to define a hydraulic model that distinguishes resistances inside and outside the xylem. We also present field measurements with AquaDust through a full diurnal cycle to confirm the robustness of the technique and of our model. We conclude that AquaDust offers potential opportunities for high-throughput, field measurements and spatially resolved studies of water relations within plant tissues.


Sign in / Sign up

Export Citation Format

Share Document