scholarly journals The importance of cuticular permeance in assessing plant water–use strategies

2020 ◽  
Vol 40 (4) ◽  
pp. 425-432
Author(s):  
Matthew Lanning ◽  
Lixin Wang ◽  
Kimberly A Novick

Abstract Accurate understanding of plant responses to water stress is increasingly important for quantification of ecosystem carbon and water cycling under future climates. Plant water-use strategies can be characterized across a spectrum of water stress responses, from tight stomatal control (isohydric) to distinctly less stomatal control (anisohydric). A recent and popular classification method of plant water-use strategies utilizes the regression slope of predawn and midday leaf water potentials, σ, to reflect the coupling of soil water availability (predawn leaf water potential) and stomatal dynamics (daily decline in leaf water potential). This type of classification is important in predicting ecosystem drought response and resiliency. However, it fails to explain the relative stomatal responses to drought of Acer sacharrum and Quercus alba, improperly ranking them on the spectrum of isohydricity. We argue this inconsistency may be in part due to the cuticular conductance of different species. We used empirical and modeling evidence to show that plants with more permeable cuticles are more often classified as anisohydric; the σ values of those species were very well correlated with measured cuticular permeance. Furthermore, we found that midday leaf water potential in species with more permeable cuticles would continue to decrease as soils become drier, but not in those with less permeable cuticles. We devised a diagnostic parameter, Γ, to identify circumstances where the impact of cuticular conductance could cause species misclassification. The results suggest that cuticular conductance needs to be considered to better understand plant water-use strategies and to accurately predict forest responses to water stress under future climate scenarios.

2011 ◽  
Vol 47 (1) ◽  
pp. 27-51 ◽  
Author(s):  
M. K. V. CARR

SUMMARYThe results of research on the water relations and irrigation needs of coconut are collated and summarized in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information on the centres of origin and production of coconut and on crop development processes is followed by reviews of plant water relations, crop water use and water productivity, including drought mitigation. The majority of the recent research published in the international literature has been conducted in Brazil, Kerala (South India) and Sri Lanka, and by CIRAD (France) in association with local research organizations in a number of countries, including the Ivory Coast. The unique vegetative structure of the palm (stem and leaves) together with the long interval between flower initiation and the harvesting of the mature fruit (44 months) mean that causal links between environmental factors (especially water) are difficult to establish. The stomata play an important role in controlling water loss, whilst the leaf water potential is a sensitive indicator of plant water status. Both stomatal conductance and leaf water potential are negatively correlated with the saturation deficit of the air. Although roots extend to depths >2 m and laterally >3 m, the density of roots is greatest in the top 0–1.0 m soil, and laterally within 1.0–1.5 m of the trunk. In general, dwarf cultivars are more susceptible to drought than tall ones. Methods of screening for drought tolerance based on physiological traits have been proposed. The best estimates of the actual water use (ETc) of mature palms indicate representative rates of about 3 mm d−1. Reported values for the crop coefficient (Kc) are variable but suggest that 0.7 is a reasonable estimate. Although the sensitivity of coconut to drought is well recognized, there is a limited amount of reliable data on actual yield responses to irrigation although annual yield increases (50%) of 20–40 nuts palm−1 (4–12 kg copra, cultivar dependent) have been reported. These are only realized in the third and subsequent years after the introduction of irrigation applied at a rate equivalent to about 2 mm d−1 (or 100 l palm−1 d−1) at intervals of up to one week. Irrigation increases female flower production and reduces premature nut fall. Basin irrigation, micro-sprinklers and drip irrigation are all suitable methods of applying water. Recommended methods of drought mitigation include the burial of husks in trenches adjacent to the plant, mulching and the application of common salt (chloride ions). An international approach to addressing the need for more information on water productivity is recommended.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Jinyoung Yang ◽  
Richard C. Sicher ◽  
Moon S. Kim ◽  
Vangimalla R. Reddy

Three maize genotypes were grown in controlled environment chambers with ambient (38 Pa) or elevated (70 Pa) carbon dioxide and water stress treatments were initiated 17 days after sowing. Shoot dry weight of the drought tolerant hybrid in both CO2 treatments was 44 to 73% less than that of the intermediate and sensitive hybrids when seedlings were well watered. Decreased shoot and root dry weights of the tolerant maize hybrid due to drought were about one-half that of the other two hybrids. Genotypic differences were observed in decreases of soil water content, leaf water potential, net photosynthesis and stomatal conductance in response to drought. Eleven of 19 amino acids measured in this study increased, methionine was unchanged and alanine and aspartate decreased in response to drought in the ambient CO2 treatment. Increased amino acid levels under elevated CO2 were observed at the end of the experiment. Significant genotypic differences were detected for amino acid responses to drought. Effects of drought on all three genotypes were mitigated by CO2 enrichment. Decreased shoot growth likely improved the stress tolerance of a highly drought resistant maize hybrid by reducing moisture loss, improving soil moisture content and increasing leaf water potential.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 75
Author(s):  
Michele Faralli ◽  
Pier Lugi Bianchedi ◽  
Massimo Bertamini ◽  
Claudio Varotto

Understanding the physiological basis underlying the water stress responses in grapevine is becoming increasingly topical owing to the challenges that climate change will impose to grapevine agriculture. Here we used cv. Pinot gris (clone H1), grafted on a series of tolerant (1103Paulsen; P), sensitive (SO4) and recently selected (Georgikon28; G28, Georgikon121; G121, Zamor17; Z17) rootstocks. Plants were either subjected to reduced water availability (WS) or maintained at pot capacity (WW). Photosynthetic (light response curves), stomatal and in vivo gas exchange analysis were carried out as well as dynamics of daily water use (WU), leaf area accumulation with affordable RGB imaging pipelines and leaf water potential. Significant genotypic variation was recorded between rootstocks for most of the traits analyzed under optimal conditions with P and SO4 showing a more vigorous growth, higher CO2 assimilation rate, stomatal conductance and stomatal density per unit of leaf area than G28, G121, Z17 (p < 0.001). Under WS, rootstocks induced different water stress response in Pinot gris, with G28 and G121 showing a higher sensitivity of water use to reduced water availability (WS) (p = 0.021) and no variation for midday leaf water potential until severe WS. P, Z17 and to some extent SO4 induced a pronounced near-anisohydric response with a general WU maintenance followed by reduction in leaf water potential even at high levels of soil water content. In addition, G28 and G121 showed a less marked slope in the linear relationship between daily water use and VPD (p = 0.008) suggesting elevated sensitivity of transpiration to evaporative demand. This led to an insensitivity for total dry weight biomass of G28 and G121 under WS conditions (p < 0.001). This work provides: (i) an in-depth analysis for a series of preferable traits under WS in Pinot gris; (ii) a characterization of Pinot gris × rootstock interaction and a series of desirable traits under WS induced by several rootstocks; (iii) the potential benefit for the use a series of affordable methods (e.g., RGB imaging) to easily detect dynamic changes in biomass in grapevine and quickly phenotype genotypes with superior responses under WS. In conclusion, the near-isohydric and conservative behavior observed for G28 and G121 coupled with their low vigor suggest them as potential Pinot gris rootstock candidates for sustaining grapevine productivity in shallow soils likely to develop terminal stress conditions.


1980 ◽  
Vol 16 (1) ◽  
pp. 21-27 ◽  
Author(s):  
D. Kumar ◽  
Larry L. Tieszen

SUMMARYExperiments were carried out to relate soil moisture to leaf water potential (Ψ1), and to determine the effects of varying Ψ1, on leaf conductances and photosynthesis in coffee. Stomatal conductance was maximum at 0900 h, but plants growing in drier soil showed marked mid-day stomatal closure. After 1500 h, stomata began closing although plant water status improved. Photosynthesis in relation to changing Ψ1 appeared to exhibit roughly three different rates. At the fixed experimental temperature (25°C) low Ψ1 reduced photosynthesis throughits influence on stomata, but under field conditions low Ψ1 and an accompanying rise in temperature could lower the rate by lowering both mesophyll and stomatal conductances.


1985 ◽  
Vol 65 (4) ◽  
pp. 921-933 ◽  
Author(s):  
L. M. DWYER ◽  
D. W. STEWART

Water extraction patterns and plant water deficits for corn (Zea mays L.) were measured and related to development of aboveground biomass, leaf area and root density under different irrigation schedules in controlled chambers. A multi-layer transpiration model, based on an Ohm’s Law analogy, simulated the water uptake processes and predicted leaf water potential and soil water content through time. Comparison of measurements and model predictions of plant and soil water status tested our understanding of the principles involved in plant water use which resulted in growth differences. The experiment involved 48 planted cylinders plus controls; half were well-watered and maintained at or above field capacity and half were allowed to dry to near the wilting point. Over 6 wk, water stress reduced above-ground biomass and leaf area, but enhanced root growth over that of well-watered plants. This reflected the preferential allocation of photosynthate to the root when soil water became limiting. Measured leaf water potentials fell below the level for stomatal closure of the chamber population. The model also predicted a degree of water stress (midday leaf water potential of −1.48 MPa) that would increase stomatal resistance and restrict transpiration and photosynthesis. Measurements and predictions of soil water content over time were generally in good agreement. The model is therefore considered useful in describing water use patterns under controlled conditions.Key words: Zea mays L., transpiration, water use modelling, plant water stress, dry matter partitioning


2004 ◽  
Vol 16 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Mara de Menezes de Assis Gomes ◽  
Ana Maria Magalhães Andrade Lagôa ◽  
Camilo Lázaro Medina ◽  
Eduardo Caruso Machado ◽  
Marcos Antônio Machado

Thirty-month-old 'Pêra' orange trees grafted on 'Rangpur' lemon trees grown in 100 L pots were submitted to water stress by the suspension of irrigation. CO2 assimilation (A), transpiration (E) and stomatal conductance (g s) values declined from the seventh day of stress, although the leaf water potential at 6:00 a.m. (psipd) and at 2:00 p.m. (psi2) began to decline from the fifth day of water deficiency. The CO2 intercellular concentration (Ci) of water-stressed plants increased from the seventh day, reaching a maximum concentration on the day of most severe stress. The carboxylation efficiency, as revealed by the ratio A/Ci was low on this day and did not show the same values of non-stressed plants even after ten days of rewatering. After five days of rewatering only psi pd and psi2 were similar to control plants while A, E and g s were still different. When psi2 decreases, there was a trend for increasing abscisic acid (ABA) concentration in the leaves. Similarly, stomatal conductance was found to decrease as a function of decreasing psi2. ABA accumulation and stomatal closure occurred when psi2 was lower than -1.0 MPa. Water stress in 'Pera´ orange trees increased abscisic acid content with consequent stomatal closure and decreased psi2 values.


2007 ◽  
Vol 47 (12) ◽  
pp. 1484 ◽  
Author(s):  
B. Ben Rouina ◽  
A. Trigui ◽  
R. d'Andria ◽  
M. Boukhris ◽  
M. Chaïeb

In Tunisia, olives are grown under severe rain-fed, arid conditions. To determine the behaviour of olive trees (cv. Chemlali Sfax) during the severe drought affecting Tunisian arid areas in 2002, a range of physiological parameters were investigated in three adjacent orchards. Two olive orchards were rain-fed, one located on a sandy soil, and the other on a sandy-loam clay soil. A third orchard was also located on sandy soil, but received remedial irrigation (415 mm of water per year; ~40% of olive evapotranspiration). Predawn leaf water potential (Ψpd) did not fall below –1.52 MPa for irrigated olive trees. However, a large decrease in Ψpd was observed for rain-fed olive trees in the same period with Ψpd measured at about –3.2 MPa on sandy soil and –3.6 MPa on sandy-loam clay soil. At the same time, the minimal leaf water potential recorded at midday (Ψmin) decreased to –4.15 MPa and –4.71 MPa in the rain-fed trees for sandy and sandy-loam clay soil, respectively. For irrigated trees, the Ψmin was –1.95 MPa. These results were associated with relative water content, which varied from 80% for irrigated trees to 54 and 43.6%, respectively, for rain-fed trees and trees subjected to severe drought. In August, when the relative water content values were less than 50%, a progressive desiccation in the outer layer of canopy and death of terminal shoots were observed in trees, which grew on the sandy-loam clay soil. Furthermore, low soil water availability also affected (negatively) the net photosynthetic rate in rain-fed orchards (10.3 µmol/m2.s for irrigated trees v. 5.3 µmol/m2.s in rain-fed trees on sandy soil) and stomatal conductance (98.5 mmol/m2.s v. 69.3 mmol/m2.s). However, it improved water use efficiency (7.6 v. 4.7 µmol CO2/mmol H2O), which increased by more than 50% in both groups of rain-fed trees compared with the irrigated ones. We can conclude that olive trees respond to drought by showing significant changes in their physiological and biological mechanisms. These results also help our understanding of how olive trees cope with water stress in the field and how marginal soils can restrict growth and lower yields.


Sign in / Sign up

Export Citation Format

Share Document