Spectral composition of shade light in coastal-zone oak forests in SE Bulgaria, and relationships with leaf area index: a first overview

Trees ◽  
2007 ◽  
Vol 22 (1) ◽  
pp. 63-76 ◽  
Author(s):  
Bo L. B. Wiman ◽  
Plamena N. Gaydarova
2019 ◽  
Author(s):  
A. Kozlova ◽  
I. Piestova ◽  
L. Patrusheva ◽  
M. Lubsky ◽  
A. Nikulina ◽  
...  

2012 ◽  
Vol 58 (No. 3) ◽  
pp. 116-122 ◽  
Author(s):  
S. Khosravi ◽  
M. Namiranian ◽  
H. Ghazanfari ◽  
A. Shirvani

The focus of the present study is the estimation of leaf area index (LAI) and the assessment of allometric equations for predicting the leaf area of Lebanon oaks (Quercus libani Oliv.) in Iran&rsquo;s northern Zagros forests. To that end, 50 oak trees were randomly selected and their biophysical parameters were measured. Then, on the basis of destructive sampling of the oak trees, their specific leaf area (SLA) and leaf area were measured. The results showed that SLA and LAI of the Lebanon oaks were 136.9 cm&middot;g<sup>&ndash;1 </sup>and 1.99, respectively. Among all the parameters we measured, the crown volume exhibited the highest correlation with LAI (r<sup>2</sup> = 0.65). The easily measured tree parameters such as diameter at breast height did not show a high correlation with leaf area (r<sup>2</sup> = 0.36). Our obtained moderate correlations in the allometric equations could be due to the fact that branches of these trees had been pollarded by the local people when the branches were only 3 or 4 years old; therefore, the natural structure of the crowns in these trees might have been damaged. &nbsp;


Trees ◽  
2020 ◽  
Vol 34 (6) ◽  
pp. 1499-1506
Author(s):  
Aarne Hovi ◽  
Miina Rautiainen

Abstract Key message Leaf area index and species composition influence red-to-near-infrared and red-to-shortwave-infrared transmittance ratios of boreal and temperate forest canopies. In this short communication paper, we present how the spectral composition of transmitted shortwave radiation (350–2200 nm) varies in boreal and temperate forests based on a detailed set of measurements conducted in Finland and Czechia. Our results show that within-stand variation in canopy transmittance is wavelength dependent, and is the largest for sparse forest stands. Increasing leaf area index (LAI) reduces the overall level of transmittance as well as red-to-near-infrared and red-to-shortwave-infrared transmittance ratios. Given the same LAI, these ratios are lower for broadleaved than for coniferous forests. These results demonstrate the importance of both LAI and forest type (broadleaved vs. coniferous) in determining light quality under forest canopies.


2021 ◽  
Vol 13 (16) ◽  
pp. 3069
Author(s):  
Yadong Liu ◽  
Junhwan Kim ◽  
David H. Fleisher ◽  
Kwang Soo Kim

Seasonal forecasts of crop yield are important components for agricultural policy decisions and farmer planning. A wide range of input data are often needed to forecast crop yield in a region where sophisticated approaches such as machine learning and process-based models are used. This requires considerable effort for data preparation in addition to identifying data sources. Here, we propose a simpler approach called the Analogy Based Crop-yield (ABC) forecast scheme to make timely and accurate prediction of regional crop yield using a minimum set of inputs. In the ABC method, a growing season from a prior long-term period, e.g., 10 years, is first identified as analogous to the current season by the use of a similarity index based on the time series leaf area index (LAI) patterns. Crop yield in the given growing season is then forecasted using the weighted yield average reported in the analogous seasons for the area of interest. The ABC approach was used to predict corn and soybean yields in the Midwestern U.S. at the county level for the period of 2017–2019. The MOD15A2H, which is a satellite data product for LAI, was used to compile inputs. The mean absolute percentage error (MAPE) of crop yield forecasts was <10% for corn and soybean in each growing season when the time series of LAI from the day of year 89 to 209 was used as inputs to the ABC approach. The prediction error for the ABC approach was comparable to results from a deep neural network model that relied on soil and weather data as well as satellite data in a previous study. These results indicate that the ABC approach allowed for crop yield forecast with a lead-time of at least two months before harvest. In particular, the ABC scheme would be useful for regions where crop yield forecasts are limited by availability of reliable environmental data.


Sign in / Sign up

Export Citation Format

Share Document