Effects of radial growth, tree age, climate, and seed origin on wood density of diverse jack pine populations

Trees ◽  
2009 ◽  
Vol 24 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Yulia Savva ◽  
Ahmed Koubaa ◽  
Francine Tremblay ◽  
Yves Bergeron
1963 ◽  
Vol 41 (2) ◽  
pp. 227-235 ◽  
Author(s):  
L. C. O'Neil

An investigation of the radial growth of jack pine (Pinus banksiana Lamb.) defoliated by the Swaine jack-pine sawfly (Neodiprion swainei Midd.) disclosed that growth rings were discontinuous and missing in cross-sectional disks from severely damaged trees. In young and open-grown trees with dead tops, the incidence of such deficiencies in radial growth was especially high in disks from upper regions of the stems, in the vicinity of the dead tops; radial growth was suspended for 1 year and subsequently resumed in disks from the lower regions of some stems. Cambial inactivity was more generalized in trees from an old and dense stand and it was detected in disks representing major portions of some of the stems sampled; the death of some trees followed 2 to 6 years of cambial inactivity in disks cut at various heights along their entire stems. Growth deficiencies in the young stand were clearly effects of severe sawfly defoliation. Data from the old, dense stand indicated that sawfly defoliation had perhaps merely hastened the gradual deterioration of the stand in which intertree competition was intense.


2013 ◽  
Vol 22 (2) ◽  
pp. 36-42 ◽  
Author(s):  
D. K. Kharal ◽  
T. Fujiwara

Tree ring analysis is one of the most useful methods in volume and biomass estimation especially of the conifer trees. Ring width and ring density are important parameters in dendrochronological research. The present research was carried out with the aim of estimating the radial and volumetric growth of the Japanese Cypress trees (Chamaecyperis obstusa and C. pisifera). Destructive method was used while collecting the wood samples from the selected trees. Ring width and ring density were measured using soft X-ray densitometry method using micro-densitometer. Computer programme, developed by the Forestry and Forest Products Research Institute, Japan was used to analyze the ring with and ring density data. The average ring width of the Chamaecyparis spp. was found to be about 3.4 mm at the age of 30 years. However, two types of growth pattern were observed in the trees. Average radial growth was about 5% every year during the first 20 years of the tree age, whereas, the average radial growth was negative during the age of 20–30 years. Average density of the tree rings were increased by about 11% in each height of the trees starting from the ground. Similarly, the stem density decreased by about 3.4% annually along the radial direction from the pith.DOI: http://dx.doi.org/10.3126/banko.v22i2.9197Banko Janakari: A Journal of Forestry Information for NepalVol. 22, No. 2, 2012 November Page: 36-42 Uploaded date: 12/1/2013 


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1002
Author(s):  
Rafael M. Navarro-Cerrillo ◽  
Antonio Gazol ◽  
Carlos Rodríguez-Vallejo ◽  
Rubén D. Manzanedo ◽  
Guillermo Palacios-Rodríguez ◽  
...  

Systematic forest networks of health monitoring have been established to follow changes in tree vigor and mortality. These networks often lack long-term growth data, but they could be complemented with tree ring data, since both defoliation and radial growth are proxies of changes in tree vigor. For instance, a severe water shortage should reduce growth and increase tree defoliation in drought-prone areas. However, the effects of climatic stress and drought on growth and defoliation could also depend on tree age. To address these issues, we compared growth and defoliation data with recent climate variability and drought severity in Abies pinsapo old and young trees sampled in Southern Spain, where a systematic health network (Andalucía Permanent Plot Network) was established. Our aims were: (i) to assess the growth sensitivity of old and young A. pinsapo trees and (ii) to test if relative changes in radial growth were related with recent defoliation, for instance, after severe droughts. We also computed the resilience indices to quantify how old and young trees recovered growth after recent droughts. Wet-cool conditions during the prior autumn and the current early summer improved the growth of old trees, whereas late-spring wet conditions enhanced the growth of young trees. Old trees were more sensitive to wet and sunny conditions in the early summer than young trees. Old and young trees were more responsive to the Standardized Precipitation-Evapotranspiration Index drought index of June–July and July–August calculated at short (one–three months) and mid (three–six months) time scales, respectively. Old trees presented a higher resistance to a severe drought in 1995 than young trees. A positive association was found between stand defoliation and relative growth. Combining monitoring and tree ring networks is useful for the detection of early warning signals of dieback in similar drought-prone forests.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 605
Author(s):  
Peter F. Newton

The objective of this study was to specify, parameterize, and evaluate an acoustic-based inferential framework for estimating commercially-relevant wood attributes within standing jack pine (Pinus banksiana Lamb) trees. The analytical framework consisted of a suite of models for predicting the dynamic modulus of elasticity (me), microfibril angle (ma), oven-dried wood density (wd), tracheid wall thickness (wt), radial and tangential tracheid diameters (dr and dt, respectively), fibre coarseness (co), and specific surface area (sa), from dilatational stress wave velocity (vd). Data acquisition consisted of (1) in-forest collection of acoustic velocity measurements on 61 sample trees situated within 10 variable-sized plots that were established in four mature jack pine stands situated in boreal Canada followed by the removal of breast-height cross-sectional disk samples, and (2) given (1), in-laboratory extraction of radial-based transverse xylem samples from the 61 disks and subsequent attribute determination via Silviscan-3. Statistically, attribute-specific acoustic prediction models were specified, parameterized, and, subsequently, evaluated on their goodness-of-fit, lack-of-fit, and predictive ability. The results indicated that significant (p ≤ 0.05) and unbiased relationships could be established for all attributes but dt. The models explained 71%, 66%, 61%, 42%, 30%, 19%, and 13% of the variation in me, wt, sa, co, wd, ma, and dr, respectively. Simulated model performance when deploying an acoustic-based wood density estimate indicated that the expected magnitude of the error arising from predicting dt, co, sa, wt, me, and ma prediction would be in the order of ±8%, ±12%, ±12%, ±13%, ±20%, and ±39% of their true values, respectively. Assessment of the utility of predicting the prerequisite wd estimate using micro-drill resistance measures revealed that the amplitude-based wd estimate was inconsequentially more precise than that obtained from vd (≈ <2%). A discourse regarding the potential utility and limitations of the acoustic-based computational suite for forecasting jack pine end-product potential was also articulated.


2003 ◽  
Vol 33 (11) ◽  
pp. 2074-2080 ◽  
Author(s):  
Louis Duchesne ◽  
Rock Ouimet ◽  
Claude Morneau

The first tree health decline symptoms usually observed are foliar deficiency symptoms, foliage loss, and dieback. To improve the subjective nature and unspecificity of these assessments, we examined sugar maple (Acer saccharum Marsh.) radial growth and health to develop an indicator of sugar maple tree health status based on radial growth pattern. We used the basal area increment (BAI) of 328 tree-ring collections from 16 sites located in southern Quebec, throughout the sugarbush natural range, that were categorized by defoliation class. BAI of trees with decline symptoms was significantly lower than that of healthy trees in 9 of the 16 stands. BAI trends since 1955 showed an inverse relationship with tree decline class measured in 1989, irrespective of tree age. The results indicate that declining trees in these stands have not recovered based on BAI. They also suggest that the decrease in slope of BAI predated the observed symptoms of sugar maple decline by at least one decade. Results suggest that sugar maple vigor and health can be assessed by measuring tree's BAI trend, an indicator that may be useful for the diagnosis of sugar maple health and status years before the appearance of visible canopy symptoms.


New Forests ◽  
2019 ◽  
Vol 51 (3) ◽  
pp. 453-467 ◽  
Author(s):  
Shengzuo Fang ◽  
Daiyan Sun ◽  
Xulan Shang ◽  
Xiangxiang Fu ◽  
Wanxia Yang

2007 ◽  
Vol 37 (9) ◽  
pp. 1563-1571 ◽  
Author(s):  
H. C. Thorpe ◽  
S. C. Thomas ◽  
J. P. Caspersen

Variants of partial harvesting are gaining favour as means to balance ecosystem management and timber production objectives on managed boreal forest landscapes. Understanding how residual trees respond to these alternative silvicultural treatments is a critical step towards evaluating their potential from either a conservation or a wood supply perspective. We used dendroecological techniques combined with a chronosequence approach to quantify the temporal radial growth response pattern of residual black spruce ( Picea mariana (Mill.) BSP) trees to partial harvest in northeastern Ontario. At its peak, 8–9 years after harvest, radial growth of residual trees had doubled. The growth pattern was characterized by a 2-year phase of no response, a subsequent period of increase 3–9 years after harvest, and a stage of declining rates 10–12 years after harvest. The magnitude of tree growth response depended strongly on tree age: peak postharvest growth was substantially higher for young trees, while old trees displayed only modest growth increases. Both the large magnitude and the time delay in postharvest growth responses have important implications for the development of more accurate quantitative tools to project future yields and, more generally, for determining whether partial harvesting is a viable management option for the boreal forest.


2013 ◽  
Vol 70 (5) ◽  
pp. 451-459 ◽  
Author(s):  
Eitaro Fukatsu ◽  
Miyoko Tsubomura ◽  
Yoshitake Fujisawa ◽  
Ryogo Nakada

Silva Fennica ◽  
2007 ◽  
Vol 41 (3) ◽  
Author(s):  
Heli Peltola ◽  
Antti Kilpeläinen ◽  
Kari Sauvala ◽  
Tommi Räisänen ◽  
Veli-Pekka Ikonen

Sign in / Sign up

Export Citation Format

Share Document