Effects of water stress and substrate fertility on the early growth of Acacia senegal and Acacia seyal from Ethiopian Savanna woodlands

Trees ◽  
2014 ◽  
Vol 29 (2) ◽  
pp. 593-604 ◽  
Author(s):  
Amelework Kassa Merine ◽  
Encarna Rodríguez-García ◽  
Ricardo Alía ◽  
Valentín Pando ◽  
Felipe Bravo
Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 188
Author(s):  
Elana Dayoub ◽  
Jay Ram Lamichhane ◽  
Céline Schoving ◽  
Philippe Debaeke ◽  
Pierre Maury

Soybean (Glycine max (L.) Merr.) may contribute to the agro-ecological transition of cropping systems in Europe, but its productivity is severely affected by summer drought. New drought-avoidance cropping strategies, such as early sowing, require cultivars with high early plant growth under suboptimal conditions. This study aims at phenotyping early-stage root and shoot traits of 10 cultivars commonly grown in Europe. Cultivars were grown in minirhizotrons under two soil moisture status in controlled conditions. Root and shoot traits were evaluated at 10 days after sowing. Field early growth of two cultivars was also analyzed under early and conventional sowing dates. A significant intraspecific variability (p < 0.05) was found for most investigated shoot and root morpho-physiological traits regardless of the soil moisture status under controlled conditions. However, no significant difference among cultivars (p > 0.05) was found in terms of root architectural traits that were mainly affected by water stress. Total root length was positively correlated with shoot length and shoot dry matter (p < 0.05). Under field conditions, the differences between cultivars were expressed by the canopy cover at emergence, which determines the subsequent canopy cover dynamics. The significant early growth difference among cultivars was not related to the maturity group. Cultivars characterized by high root depth and length, high root density and narrow root angle could be considered as good candidates to cope with water stress via better soil exploration. New agronomic strategies mobilizing the diversity of cultivars could thus be tested to improve soybean water use efficiency in response to climate change.


2000 ◽  
Vol 51 (3) ◽  
pp. 361 ◽  
Author(s):  
R. Chapman ◽  
T. J. Ridsdill-Smith ◽  
N. C. Turner

The impact of water stress and infestations of redlegged earth mite [Halotydeus destructor Tucker (Acarina : Penthaleidae)] on the early growth and botanical composition of a mixed subterranean clover (Trifolium subterraneum L.) and capeweed (Arctotheca calendula Levyns) pasture was investigated in a controlled environment experiment. Water stress and redlegged earth mite infestations both significantly reduced herbage production from both species. The yield of the subterranean clover was suppressed less by water stress than that of the capeweed. The differing sensitivities of the two species to water stress were attributed to differences in seedling size and growth rates at the onset of the drought. Redlegged earth mites caused greater feeding damage on cotyledons of the subterranean clover than of the capeweed. Despite this, the mites had a greater deleterious impact on the growth of the capeweed, which was suppressed both in the presence and absence of water stress. Redlegged earth mites in the presence of water stress did not significantly affect the growth of the subterranean clover. Furthermore, in the absence of water stress, the growth of the subterranean clover was greater when mites were present than when absent. The greater sensitivity of the capeweed to the effects of feeding by the redlegged earth mites was attributed to the smaller size of its seedlings at the time the redlegged earth mites were introduced. The increase in growth of the subterranean clover following the introduction of redlegged earth mites is more likely due to a change in the competitive relationships between the two plant species than to any direct effect of the mites’ feeding. Our observations indicate that the presence of water stress and redlegged earth mites significantly affects the competitive interactions between seedlings of subterranean clover and capeweed.


2020 ◽  
Vol 16 (70) ◽  
pp. 410
Author(s):  
Gadah Albasher ◽  
NahedS Alharthi ◽  
Saad Alkahtani ◽  
Nada Aljarba ◽  
Nouf Al Sultan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document