scholarly journals Integration of max-stable processes and Bayesian model averaging to predict extreme climatic events in multi-model ensembles

2018 ◽  
Vol 33 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Yonggwan Shin ◽  
Youngsaeng Lee ◽  
Juntae Choi ◽  
Jeong-Soo Park
Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2124
Author(s):  
Kai Duan ◽  
Xiaola Wang ◽  
Bingjun Liu ◽  
Tongtiegang Zhao ◽  
Xiaohong Chen

This study investigated the strength and limitations of two widely used multi-model averaging frameworks—Bayesian model averaging (BMA) and reliability ensemble averaging (REA), in post-processing runoff projections derived from coupled hydrological models and climate downscaling models. The performance and weight distributions of five model ensembles were thoroughly compared, including simple equal-weight averaging, BMA, and REAs optimizing mean (REA-mean), maximum (REA-max), and minimum (REA-min) monthly runoff. The results suggest that REA and BMA both can synthesize individual models’ diverse skills with comparable reliability, despite of their different averaging strategies and assumptions. While BMA weighs candidate models by their predictive skills in the baseline period, REA also forces the model ensembles to approximate a convergent projection towards the long-term future. The type of incorporation of the uncertain future climate in REA weighting criteria, as well as the differences in parameter estimation (i.e., the expectation maximization (EM) algorithm in BMA and the Markov Chain Monte Carlo sampling method in REA), tend to cause larger uncertainty ranges in the weight distributions of REA ensembles. Moreover, our results show that different averaging objectives could cause much larger discrepancy than that induced by different weighting criteria or parameter estimation algorithms. Among the three REA ensembles, REA-max most resembled BMA because the EM algorithm of BMA converges to the minimum aggregated error, and thus emphasize the simulation of high flows. REA-min achieved better performance in terms of inter-annual temporal pattern, yet at the cost of compromising accuracy in capturing mean behaviors. Caution should be taken to strike a balance among runoff features of interest.


Author(s):  
Lorenzo Bencivelli ◽  
Massimiliano Giuseppe Marcellino ◽  
Gianluca Moretti

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1098
Author(s):  
Ewelina Łukaszyk ◽  
Katarzyna Bień-Barkowska ◽  
Barbara Bień

Identifying factors that affect mortality requires a robust statistical approach. This study’s objective is to assess an optimal set of variables that are independently associated with the mortality risk of 433 older comorbid adults that have been discharged from the geriatric ward. We used both the stepwise backward variable selection and the iterative Bayesian model averaging (BMA) approaches to the Cox proportional hazards models. Potential predictors of the mortality rate were based on a broad range of clinical data; functional and laboratory tests, including geriatric nutritional risk index (GNRI); lymphocyte count; vitamin D, and the age-weighted Charlson comorbidity index. The results of the multivariable analysis identified seven explanatory variables that are independently associated with the length of survival. The mortality rate was higher in males than in females; it increased with the comorbidity level and C-reactive proteins plasma level but was negatively affected by a person’s mobility, GNRI and lymphocyte count, as well as the vitamin D plasma level.


2015 ◽  
Vol 57 (3) ◽  
pp. 485-493 ◽  
Author(s):  
Yutaka Osada ◽  
Takeo Kuriyama ◽  
Masahiko Asada ◽  
Hiroyuki Yokomizo ◽  
Tadashi Miyashita

Sign in / Sign up

Export Citation Format

Share Document