Characterization of ethylene effects on sex determination in cucumber plants

2003 ◽  
Vol 16 (3) ◽  
pp. 103-111 ◽  
Author(s):  
Seiji Yamasaki ◽  
Nobuharu Fujii ◽  
Hideyuki Takahashi
Keyword(s):  
PLoS ONE ◽  
2009 ◽  
Vol 4 (7) ◽  
pp. e6401 ◽  
Author(s):  
Irene Pala ◽  
Manfred Schartl ◽  
Sólveig Thorsteinsdóttir ◽  
Maria Manuela Coelho

Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 202 ◽  
Author(s):  
Qian Bai ◽  
Chenyi Zhu ◽  
Xia Lei ◽  
Tao Cao ◽  
Shuchai Su ◽  
...  

Pistacia chinensis Bunge is widely acknowledged to be dioecious, but rare monoecious individuals have been found. However, the origin of monoecism and the sex differentiation of different sex types remain intriguing questions. Here, sex expressions were explored by identification of sex-associated DNA markers, determination of the sex stability after grafting, and histological characterization of inflorescence bud development using anatomical analysis. The results showed that (1) although polymorphisms among individuals existed, the banding patterns of Polymerase Chain Reaction (PCR) products for different sex types on the same monoecious tree were consistent; (2) the sex expressions of grafted trees were not consistent with those of scions, indicating that monoecism probably did not originate from a stable bud mutation; and (3) both males and females underwent a bisexual period, then the stamen primordia in female buds degenerated into the second round tepals, while the pistil primordia in male buds gradually disappeared. During the sex differentiation phase, female buds were spindle-shaped, while the male buds were full teardrop-shaped, and male buds were bigger than female buds. Taken together, no sex-associated DNA marker was found, sex expressions were unstable after grafting, and the alternative sex organs appeared in the early stage of sex differentiation, suggesting that sex determination occurred during floral development instead of the early vegetative period. These results indicated that the sex expressions may be affected by environmental factors, increasing the understanding of sex determination mechanisms in P. chinensis and other species.


2012 ◽  
Vol 48 (2) ◽  
pp. 365-372 ◽  
Author(s):  
Marie-Laure Guillemin ◽  
Oscar R. Huanel ◽  
Enrique A. Martínez

Genetics ◽  
1986 ◽  
Vol 114 (1) ◽  
pp. 15-52
Author(s):  
Jonathan Hodgkin

ABSTRACT Mutations of the gene tra-3 result in partial masculinization of XX animals of C. elegans, which are normally hermaphrodites (males are XO). A total of 43 tra-3 revertants (one intragenic, 42 extragenic) have been isolated and analyzed, in the hope of identifying new sex-determination loci. Most (38) of the extragenic suppressors cause partial or complete feminization of XX and XO animals; the remaining four are weak suppressors. The feminizing suppressors are mostly alleles of known sex-determining genes: tra-1 (11 dominant alleles), tra-2 (one dominant allele), fem-1 (four alleles) and fem-2 (four alleles), but 18 are alleles of a new gene, fem-3. Additional alleles have been isolated for the fem-2 and fem-3 genes, as well as fem-3 deficiencies. Mutations in fem-3 resemble alleles of fem-1 (previously characterized): putative null alleles result in complete feminization of XX and XO animals, transforming them into fertile females. Severe alleles of fem-2 also cause complete feminization of XX animals at all temperatures, but feminization of fem-2 XO animals is temperature-sensitive: complete at 25°, incomplete at 20°. As with fem-1, severe mutations of fem-2 and fem-3 are wholly epistatic to masculinizing alleles of tra-2 and tra-3, and epistatic to tra-1 masculinizing alleles in the germline, but not in the soma. All three fem genes are essential for male development and appear to have a dual role in promoting spermatogenesis and repressing tra-1 activity. All three fem genes exhibit strong maternal effects; the maternal contribution of fem gene products may be inactivated in XX animals by a posttranscriptional mechanism. Maternal contributions of wild-type fem-3 product are necessary for normal XO male development and XX hermaphrodite (as opposed to female) development.


Development ◽  
1998 ◽  
Vol 125 (2) ◽  
pp. 225-235
Author(s):  
H. Li ◽  
B.S. Baker

The zygotic function of the hermaphrodite (her) gene of Drosophila plays an important role in sexual differentiation. Our molecular genetic characterization of her suggests that her is expressed sex non-specifically and independently of other known sex determination genes and that it acts together with the last genes in the sex determination hierarchy, doublesex and intersex, to control female sexual differentiation. Consistent with such a terminal function in sexual differentiation, her encodes a protein with C2H2-type zinc fingers. The her zinc fingers are atypical and similar to the even-numbered zinc fingers of ZFY and ZFX proteins in humans and other vertebrates.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e56006 ◽  
Author(s):  
Mariko Forconi ◽  
Adriana Canapa ◽  
Marco Barucca ◽  
Maria A. Biscotti ◽  
Teresa Capriglione ◽  
...  

Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 43-61 ◽  
Author(s):  
T Schedl ◽  
J Kimble

Abstract This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e85118 ◽  
Author(s):  
Mikhail G. Divashuk ◽  
Oleg S. Alexandrov ◽  
Olga V. Razumova ◽  
Ilya V. Kirov ◽  
Gennady I. Karlov

Sign in / Sign up

Export Citation Format

Share Document