Improving the one-position inheritance artificial bee colony algorithm using heuristic search mechanisms

2019 ◽  
Vol 24 (2) ◽  
pp. 1271-1281 ◽  
Author(s):  
Jiaxu Ning ◽  
Changsheng Zhang ◽  
Bin Zhang ◽  
Peng Wang
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Ye ◽  
Fei Che ◽  
Lipeng Gao

For the future information confrontation, a single jamming mode is not effective due to the complex electromagnetic environment. Selecting the appropriate jamming decision to coordinately allocate the jamming resources is the development direction of the electronic countermeasures. Most of the existing studies about jamming decision only pay attention to the jamming benefits, while ignoring the jamming cost. In addition, the conventional artificial bee colony algorithm takes too many iterations, and the improved ant colony (IAC) algorithm is easy to fall into the local optimal solution. Against the issue, this paper introduces the concept of jamming cost in the cognitive collaborative jamming decision model and refines it as a multiobjective one. Furthermore, this paper proposes a tabu search-artificial bee colony (TSABC) algorithm to cognitive cooperative-jamming decision. It introduces the tabu list into the artificial bee colony (ABC) algorithm and stores the solution that has not been updated after a certain number of searches into the tabu list to avoid meeting them when generating a new solution, so that this algorithm reduces the unnecessary iterative process, and it is not easy to fall into a local optimum. Simulation results show that the search ability and probability of finding the optimal solution of the new algorithm are better than the other two. It has better robustness, which is better in the “one-to-many” jamming mode.


2021 ◽  
pp. 136943322110204
Author(s):  
Renzhi Yao ◽  
Yanmao Chen ◽  
Li Wang ◽  
Zhongrong Lu

Hysteresis is a common phenomenon arising in many engineering applications. It describes a memory-based relation between the restoring force and the displacement. Identification of the hysteretic parameters is central to practical application of the hysteretic models. To proceed so, a noteworthy thing is that the hysteretic models are often complex and non-differentiable so that getting the gradients is never straightforward and therefore, the swarm-based algorithm is often preferable to inverse hysteretic parameter identification. Along these lines, an improved artificial bee colony algorithm is developed in this paper for general hysteretic parameter identification. On the one hand, several hysteretic models along with the extensions to tackle the degradation and pinching behaviours are considered and how to model a structure with hysteretic components is also elaborated. As a result, the governing equation for the direct problem is established. On the other hand, the differential evolution mechanism is introduced to improve the original artificial bee colony algorithm. Numerical examples are conducted to testify the feasibility and accuracy of the proposed method in nonlinear hysteretic parameter identification.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1384-1395
Author(s):  
Rakaa T. Kamil ◽  
Mohamed J. Mohamed ◽  
Bashra K. Oleiwi

A modified version of the artificial Bee Colony Algorithm (ABC) was suggested namely Adaptive Dimension Limit- Artificial Bee Colony Algorithm (ADL-ABC). To determine the optimum global path for mobile robot that satisfies the chosen criteria for shortest distance and collision–free with circular shaped static obstacles on robot environment. The cubic polynomial connects the start point to the end point through three via points used, so the generated paths are smooth and achievable by the robot. Two case studies (or scenarios) are presented in this task and comparative research (or study) is adopted between two algorithm’s results in order to evaluate the performance of the suggested algorithm. The results of the simulation showed that modified parameter (dynamic control limit) is avoiding static number of limit which excludes unnecessary Iteration, so it can find solution with minimum number of iterations and less computational time. From tables of result if there is an equal distance along the path such as in case A (14.490, 14.459) unit, there will be a reduction in time approximately to halve at percentage 5%.


2013 ◽  
Vol 32 (12) ◽  
pp. 3326-3330
Author(s):  
Yin-xue ZHANG ◽  
Xue-min TIAN ◽  
Yu-ping CAO

2019 ◽  
Vol 17 ◽  
Author(s):  
Yanqiu Yao ◽  
Xiaosa Zhao ◽  
Qiao Ning ◽  
Junping Zhou

Background: Glycation is a nonenzymatic post-translational modification process by attaching a sugar molecule to a protein or lipid molecule. It may impair the function and change the characteristic of the proteins which may lead to some metabolic diseases. In order to understand the underlying molecular mechanisms of glycation, computational prediction methods have been developed because of their convenience and high speed. However, a more effective computational tool is still a challenging task in computational biology. Methods: In this study, we showed an accurate identification tool named ABC-Gly for predicting lysine glycation sites. At first, we utilized three informative features, including position-specific amino acid propensity, secondary structure and the composition of k-spaced amino acid pairs to encode the peptides. Moreover, to sufficiently exploit discriminative features thus can improve the prediction and generalization ability of the model, we developed a two-step feature selection, which combined the Fisher score and an improved binary artificial bee colony algorithm based on support vector machine. Finally, based on the optimal feature subset, we constructed the effective model by using Support Vector Machine on the training dataset. Results: The performance of the proposed predictor ABC-Gly was measured with the sensitivity of 76.43%, the specificity of 91.10%, the balanced accuracy of 83.76%, the area under the receiver-operating characteristic curve (AUC) of 0.9313, a Matthew’s Correlation Coefficient (MCC) of 0.6861 by 10-fold cross-validation on training dataset, and a balanced accuracy of 59.05% on independent dataset. Compared to the state-of-the-art predictors on the training dataset, the proposed predictor achieved significant improvement in the AUC of 0.156 and MCC of 0.336. Conclusion: The detailed analysis results indicated that our predictor may serve as a powerful complementary tool to other existing methods for predicting protein lysine glycation. The source code and datasets of the ABC-Gly were provided in the Supplementary File 1.


Sign in / Sign up

Export Citation Format

Share Document