Feature selection by recursive binary gravitational search algorithm optimization for cancer classification

2019 ◽  
Vol 24 (6) ◽  
pp. 4407-4425 ◽  
Author(s):  
Xiaohong Han ◽  
Dengao Li ◽  
Ping Liu ◽  
Li Wang
2020 ◽  
Vol 93 ◽  
pp. 106341 ◽  
Author(s):  
Ritam Guha ◽  
Manosij Ghosh ◽  
Akash Chakrabarti ◽  
Ram Sarkar ◽  
Seyedali Mirjalili

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 609 ◽  
Author(s):  
Marina Bardamova ◽  
Anton Konev ◽  
Ilya Hodashinsky ◽  
Alexander Shelupanov

This paper concerns several important topics of the Symmetry journal, namely, pattern recognition, computer-aided design, diversity and similarity. We also take advantage of the symmetric and asymmetric structure of a transfer function, which is responsible to map a continuous search space to a binary search space. A new method for design of a fuzzy-rule-based classifier using metaheuristics called Gravitational Search Algorithm (GSA) is discussed. The paper identifies three basic stages of the classifier construction: feature selection, creating of a fuzzy rule base and optimization of the antecedent parameters of rules. At the first stage, several feature subsets are obtained by using the wrapper scheme on the basis of the binary GSA. Creating fuzzy rules is a serious challenge in designing the fuzzy-rule-based classifier in the presence of high-dimensional data. The classifier structure is formed by the rule base generation algorithm by using minimum and maximum feature values. The optimal fuzzy-rule-based parameters are extracted from the training data using the continuous GSA. The classifier performance is tested on real-world KEEL (Knowledge Extraction based on Evolutionary Learning) datasets. The results demonstrate that highly accurate classifiers could be constructed with relatively few fuzzy rules and features.


2020 ◽  
Vol 31 (10) ◽  
pp. 2050138
Author(s):  
Yogesh Kumar ◽  
Shashi Kant Verma ◽  
Sandeep Sharma

This paper addresses an autonomous facial expression recognition system using the feature selection approach of the Quantum-Inspired Binary Gravitational Search Algorithm (QIBGSA). The detection of facial features completely depends upon the selection of precise features. The concept of QIBGSA is a modified binary version of the gravitational search algorithm by mimicking the properties of quantum mechanics. The QIBGSA approach reduces the computation cost for the initial extracted feature set using the hybrid approach of Local binary patterns with Gabor filter method. The proposed automated system is a sequential system with experimentation on the image-based dataset of Karolinska Directed Emotional Faces (KDEF) containing human faces with seven different emotions and different yaw angles. The experiments are performed to find out the optimal emotions using the feature selection approach of QIBGSA and classification using a deep convolutional neural network for robust and efficient facial expression recognition. Also, the effect of variations in the yaw angle (front to half side view) on facial expression recognition is studied. The results of the proposed system for the KDEF dataset are determined in three different cases of frontal view, half side view, and combined frontal and half side view images. The system efficacy is analyzed in terms of recognition rate.


Sign in / Sign up

Export Citation Format

Share Document